例3:有外观相同的三极管6只,按其电流放大 系数分类,4只属甲类,2只属乙类。按下列两种 方案抽取三极管两只, (1).每次抽取一个只,测试后放回,然后再抽取 下一只(放回抽样); (2).每次抽取一只,测试后不放回,然后在剩下 的三极管中再抽取下一只(不放回抽样)。 设A={抽到两只甲类三极管},B={抽到两只同类 三极管},C={至少抽到一只甲类三极管},D={抽 到两只不同类三极管}。 求:P(A),P(B),P(C),P①D)
例3:有外观相同的三极管6只,按其电流放大 系数分类,4只属甲类,2只属乙类。按下列两种 方案抽取三极管两只, (1).每次抽取一个只,测试后放回,然后再抽取 下一只(放回抽样); (2).每次抽取一只,测试后不放回,然后在剩下 的三极管中再抽取下一只(不放回抽样)。 设A={抽到两只甲类三极管},B={抽到两只同类 三极管},C={至少抽到一只甲类三极管},D={抽 到两只不同类三极管}。 求:P(A),P(B),P(C),P(D)
解:(1).由于每次抽测后放回,因此,每次都是 在6只三极管中抽取。因第一次从6只中取 只,共有6种可能取法;第二次还是从6只中取 只,还是有6种可能取法。故,取两只三极管 共有6×6=36种可能的取法。从而,n=36 注意:这种分析方法使用的是中学学过的 乘法原理
解: (1).由于每次抽测后放回,因此,每次都是 在6只三极管中抽取。因第一次从6只中取一 只,共有6种可能取法;第二次还是从6只中取 一只,还是有6种可能取法。故,取两只三极管 共有66=36 种可能的取法。从而,n=36。 注意:这种分析方法使用的是中学学过的 乘法原理