111a5)lim(-1x22×3(n-l)xnsecx-1a7lim/1-5x(16) limx2x-→0r121(18) limx→>0*2x +1(x-1)2(x-1)x-1解:(1)lim= lim=limx-1x-→1-i (x-1)(x+x+1)X-1 x +x+1lim(x-1)=0:lim(x2 +x+1)m(n+1)(1+2+...+n)2n(2)=lim= lim -lim+n?n-→n?nnnn→o=limn+11=lim+2n21-002n2(3) lim(/x2 +x+1- /x2 x+1Vx?+x+1-Vx?-x+1)Vx2+x+1+Vx?-x+1= lim1→0(Vx+x+1+/2-x+122x= lim= limX-→+00 (N+x+1+V/2-X+1)x-→0/x?+x+1+x?-x+1lim 22= lim=1 :XO1++++,1/1-1+lim,y1+++++lim1-1+122x-1(4)lim= limx+1x-1(x+1)(x-1)(x+1)(x-1)x+11= lim= lim2--1(x+1)(x-1)x-+-1x-1因为当x→0时,e-1~x,所以(5)er-1xlimlim=1:x-→0 sinxx-o sinx
⒂ 1 1 1 lim( ) 1 2 2 3 ( 1) n→ n n + + + − ; ⒃ 2 0 sec 1 lim x x → x − ; ⒄ 0 lim 1 5 x x x → − ; ⒅ 1 1 0 2 1 lim 2 1 x x x → + − + . 解: ⑴ ( ) 2 3 1 lim x 1 x → x − − ( ) ( )( ) 2 2 1 lim 1 1 x x → x x x − = − + + 2 1 lim x 1 x → x x − = + + ( ) ( ) 2 lim 1 lim 1 x x x x x → → − = + + = 0 ; ⑵ 2 2 2 1 2 lim . n n → n n n + + + ( ) 2 1 2 . lim n n → n + + + = ( 1) 2 2 lim n n n n + → = 1 lim n 2 n → n + = 1 1 lim n→ 2 2 n = + 1 2 = ; ⑶ ( ) 2 2 lim 1 1 x x x x x → + + − − + ( )( ) ( ) 2 2 2 2 2 2 1 1 1 1 lim 1 1 x x x x x x x x x x x x x → + + − − + + + + − + = + + + − + ( ) 2 2 2 lim 1 1 x x x x x x → = + + + − + ( ) 2 2 2 1 1 lim x x x x x x x x → + + + − + = 2 2 1 1 1 1 2 lim 1 1 x x x x x → = + + + − + 2 2 1 1 1 1 lim 2 lim 1 lim 1 x x x x x x x → → → = + + + − + = 1 ; ⑷ 2 1 1 2 lim x→− x x 1 1 + + − ( )( ) ( )( ) 1 1 2 lim x 1 1 1 1 x →− x x x x − = + + − + − ( )( ) 1 1 lim x 1 1 x →− x x + = + − 1 1 lim x→− x 1 = − 1 2 =− ⑸ 因为当 x → 时, 1 x e − ~ x ,所以 0 1 lim sin x x e → x − = 0 lim x sin x → x = 1 ;
lim276)lim|1-lim/1_ sinxsinx1-limx-sinxx101(因为lim==0月(7)limlimcosxcosxx+cOsxx1+1+limxorxsinxcOSX=0);sinx≤1,cosx≤1,所以lim=0,limx→0X(/2x+1-3)(Vx-2 + 2)/2x+1-3(8)limVx-2-V2+4 (Vx-2- V2)(Vx-2+2(V/2x+1-3)(Vx-2 + V2)= limT→4x-4(/2x+1-3)(/x-2 + /2)(/2x+1+3=limX→4(x-4)(/2x+1+3)2(Vx-2+ 2)2(x-4)(V/x-2+2)2/2-limlim(x-4)(/2x+1+3)(/2x+1+3)X→4(-) --=ein91sinxsinxcosr1 sinx.(1-cosx)tanx-sinxlim,因为当x→0(10) = lim-cosx= limx3Xx3X0x-→0x→0 cosx时,1-cosx~x2,所以1x21 sinx.(1-cosx1sinx,sinx_1limlim-limlimXx3x222 1~0X>0cOSXX-0COSXX-0xxItanx-sinx故lim2x-→0= lim(D)lim
⑹ 1 2 lim 1 x x x − → − 2 lim 1 2 lim 1 x x x x x → → − = − ( ) 2 2 2 lim 1 2 lim 1 x x x x x − − → → + − = − 2 e − = ; ⑺ sin sin 1 1 lim sin lim lim 1 cos cos cos 1 1 lim x x x x x x x x x x x x x x x x → → → → − − − === + + + (因为 1 lim 0 x→ x = 且 sin 1, cos 1 x x ,所以 sin cos lim 0,lim 0 x x x x → → x x = = ); ⑻ 2 1 3 lim 2 2 x x → x + − − − ( )( ) ( )( ) 2 1 3 2 2 lim 2 2 2 2 x x x x x → + − − + = − − − + ( 2 1 3 2 2 )( ) lim x 4 x x → x + − − + = − ( )( )( ) ( )( ) 2 1 3 2 2 2 1 3 lim 4 2 1 3 x x x x x x → + − − + + + = − + + ( )( ) ( )( ) 2 4 2 2 lim 4 2 1 3 x x x x x → − − + = − + + ( ) ( ) 2 2 2 lim 2 1 3 x x x → − + = + + 2 2 3 = ; ⑼ 1 0 3 lim 3 x x x → − 1 0 lim 1 3 x x x → = − 3 3 0 lim 1 3 x x x − − → = + − 3 e − = ; ⑽ 3 0 tan sin lim x x x → x − sin sin cos cos cos 3 0 lim x x x x x x→ x − = ( ) 3 0 1 sin . 1 cos lim cos x x x → x x − = ,因为当 x →0 时, 1 cos − x ~ 1 2 2 x ,所以 ( ) 3 0 1 sin . 1 cos lim cos x x x → x x − = 1 2 2 2 0 0 0 1 sin 1 sin 1 lim lim lim x x x cos 2 2 x x x → → → x x x x = = . 故 3 0 tan sin 1 lim x 2 x x → x − = ; ⑾ 2 2 3 lim 2 x x x x + → + 3 2 2 3 2 3 3 lim 1 1 2 2 x x→ x x = + +
im-212+3*-1-12x-13-2°+3-2limlim(12)解:limx-→0xX0xxx→0x2r3*_1=lim+limx-→0r→0x2-1对 limy=2*-1,则y+1=2,两边同时取底为e的对数,得Sx-→>0AInJ+1In2*=In(y+1),xln2=In(y+1),所以xIn,于是2'-1ylim= lim -3-0hmx->0xIn2ln2111= ln2.lim= In 2.=limy= In2y=0 ↓ In(y+ 1)y-→>0In(y+1)In[lim (y+1)]lim In(y+ 1)-+0In 2= ln2,Ine同理可得3*-1lim=In3,x->0x2*+3-2lim所以=ln2+ln3=ln6;x-→0x=elim(a)=lim[(1+2x)*=lim(e)(13) lim(1+2x) = lim[(1+2x)±=e?:(4)因为2212n11nnn’ +nn2+2元n? +n元n+元n+元n+n+n元n+元n+元1in(n+1)211+2+...+nn而且+-n’+n元n+mn+mn’+nn?+n元
3 2 2 3 2 3 3 lim 1 lim 1 2 2 x x x → → x x = + + 3 2 = e ; ⑿ 解: 0 2 3 2 lim x x x→ x + − = 0 0 2 3 1 1 2 1 3 1 lim lim x x x x x x → → x x x + − − − − = + 0 0 2 1 3 1 lim lim x x x x → → x x − − = + , 对 0 2 1 lim x x→ x − , 令 2 1 x y = − , 则 1 2x y + = , 两 边 同 时 取 底 为 e 的 对 数 , 得 ln 2 ln(y 1) x = + , x ln 2 ln(y 1) = + ,所以 1 2 ln ln y x + = ,于是 1 2 0 0 ln ln 2 1 lim lim y x x y y x + → → − = ( ) 1 1 0 0 1 0 0 ln 2 1 1 1 lim ln 2.lim ln 2. ln 2. ln(y 1) ln(y 1) ln[lim 1 ] lim ln(y 1) y y y y y y y y y → → → → = = = = + + + + ln 2 ln 2 ln e = = , 同理可得 0 3 1 lim ln 3 x x→ x − = , 所以 0 2 3 2 lim x x x→ x + − = ln2 ln3 ln6 + = ; (13) ( ) 1 sin 0 lim 1 2 x x x → + ( ) ( ) ( ) ( ) 2 2 1 1 sin sin sin 2 2 sin 0 2 2 lim 0 0 0 lim 1 2 lim 1 2 lim x x x x x x x x x x x x x x x x e e → → → → = + = + = = 2 = e ; ⒁ 因为 2 2 2 2 2 2 2 2 2 1 2 1 2 1 2 . . . 2 n n n n n n n n n n n n n n n n + + + + + + + + + + + + + + + + + + 而且 2 2 2 2 2 1 ( 1) 1 2 1 2 . 2 . n n n n n n n n n n n n n n + + + + + + + = = + + + + +