BP神经网络IF钢铝耗的预测模型

为了解决某钢厂IF钢冶炼RH精炼过程铝耗偏高问题,通过数理统计和BP神经网络相结合的方法建立了铝耗预测模型,并与多元线性回归模型进行比较,该模型具有更高准确度.该模型分析了不同冶炼工艺参数对铝耗的具体影响,并对相应工艺参数进行了优化.结果表明:脱碳结束氧活度或RH进站氧活度降低0.005%左右,每吨钢铝耗可降低0.07~0.08 kg,铝脱氧有效利用系数为70.31%~80.35%;RH进站钢液温度增加35~40℃,铝耗降低1 kg左右,铝热反应升温利用系数在97.4%左右;吹氧量小于100 m3和大于100 m3时,氧气与铝反应的比例分别为37.3%和74.6%左右,吹氧量每增加50 m3,铝耗分别增加0.1 kg和0.2 kg左右.工艺参数优化后平均铝耗由1.359 kg降低到1.113 kg,降幅达18.1%.
文件格式:PDF,文件大小:634.8KB,售价:3.24元
文档详细内容(约9页)
点击进入文档下载页(PDF格式)
共9页,试读已结束,阅读完整版请下载
点击购买下载(PDF)

下载及服务说明

  • 购买前请先查看本文档预览页,确认内容后再进行支付;
  • 如遇文件无法下载、无法访问或其它任何问题,可发送电子邮件反馈,核实后将进行文件补发或退款等其它相关操作;
  • 邮箱:

文档浏览记录