工程科学学报 Chinese Journal of Engineering 赤泥基光催化材料降解水中有机污染物的应用现状及发展趋势 王亚光刘晓明 Review on the application and development of red mud-based photocatalytic materials for degradation of organic pollutants in water WANG Ya-guang.LIU Xiao-ming 引用本文: 王亚光,刘晓明.赤泥基光催化材料降解水中有机污染物的应用现状及发展趋势).工程科学学报,2021,43(1):22-32.doi 10.13374-issn2095-9389.2020.07.30.003 WANG Ya-guang,LIU Xiao-ming.Review on the application and development of red mud-based photocatalytic materials for degradation of organic pollutants in water [J].Chinese Journal of Engineering,2021,43(1):22-32.doi:10.13374/j.issn2095- 9389.2020.07.30.003 在线阅读View online:https:/ldoi.org/10.13374.issn2095-9389.2020.07.30.003 您可能感兴趣的其他文章 Articles you may be interested in MOF材料在水环境污染物去除方面的应用现状及发展趋势(Ⅱ) Review on the application of MOF materials for removal of pollutants from the water(II) 工程科学学报.2020.42(6:680htps:doi.org/10.13374.issn2095-9389.2019.12.08.003 MOF材料在水环境污染物去除方面的应用现状及发展趋势(I) Review of application of MOF materials for removal of environmental pollutants from water (D) 工程科学学报.2020.42(3:289 https:1doi.org/10.13374j.issn2095-9389.2019.11.05.003 微波水热法快速合成氧化锌纳米棒及其光催化性能 Study of rapidly synthesis of ZnO nanorods by microwave hydrothermal method and photocatalytic performance 工程科学学报.2020,42(1):78 https:doi.org/10.13374.issn2095-9389.2019.05.25.003 赤泥基似膏体充填材料水化特性研究 Hydration characteristics of red-mud based paste-like backfill material 工程科学学报.2017,39(11:1640htps:1doi.org/10.13374.issn2095-9389.2017.11.005 基于最小Gibbs自由能原理的铁氧化物气固还原热力学研究 Thermodynamics of iron oxide gas-solid reduction based on the minimized Gibbs free energy principle 工程科学学报.2017,3911:1653htps:/1doi.org/10.13374.issn2095-9389.2017.11.007 低浓度拜耳赤泥充填材料制备及水化机理 Preparation and hydration mechanism of low concentration Bayer red mud filling materials 工程科学学报.2020,42(11:1457htps:/doi.org/10.13374.issn2095-9389.2019.11.25.001
赤泥基光催化材料降解水中有机污染物的应用现状及发展趋势 王亚光 刘晓明 Review on the application and development of red mud-based photocatalytic materials for degradation of organic pollutants in water WANG Ya-guang, LIU Xiao-ming 引用本文: 王亚光, 刘晓明. 赤泥基光催化材料降解水中有机污染物的应用现状及发展趋势[J]. 工程科学学报, 2021, 43(1): 22-32. doi: 10.13374/j.issn2095-9389.2020.07.30.003 WANG Ya-guang, LIU Xiao-ming. Review on the application and development of red mud-based photocatalytic materials for degradation of organic pollutants in water [J]. Chinese Journal of Engineering, 2021, 43(1): 22-32. doi: 10.13374/j.issn2095- 9389.2020.07.30.003 在线阅读 View online: https://doi.org/10.13374/j.issn2095-9389.2020.07.30.003 您可能感兴趣的其他文章 Articles you may be interested in MOF材料在水环境污染物去除方面的应用现状及发展趋势(II) Review on the application of MOF materials for removal of pollutants from the water (II) 工程科学学报. 2020, 42(6): 680 https://doi.org/10.13374/j.issn2095-9389.2019.12.08.003 MOF材料在水环境污染物去除方面的应用现状及发展趋势(I) Review of application of MOF materials for removal of environmental pollutants from water (I) 工程科学学报. 2020, 42(3): 289 https://doi.org/10.13374/j.issn2095-9389.2019.11.05.003 微波水热法快速合成氧化锌纳米棒及其光催化性能 Study of rapidly synthesis of ZnO nanorods by microwave hydrothermal method and photocatalytic performance 工程科学学报. 2020, 42(1): 78 https://doi.org/10.13374/j.issn2095-9389.2019.05.25.003 赤泥基似膏体充填材料水化特性研究 Hydration characteristics of red-mud based paste-like backfill material 工程科学学报. 2017, 39(11): 1640 https://doi.org/10.13374/j.issn2095-9389.2017.11.005 基于最小Gibbs自由能原理的铁氧化物气固还原热力学研究 Thermodynamics of iron oxide gas-solid reduction based on the minimized Gibbs free energy principle 工程科学学报. 2017, 39(11): 1653 https://doi.org/10.13374/j.issn2095-9389.2017.11.007 低浓度拜耳赤泥充填材料制备及水化机理 Preparation and hydration mechanism of low concentration Bayer red mud filling materials 工程科学学报. 2020, 42(11): 1457 https://doi.org/10.13374/j.issn2095-9389.2019.11.25.001
工程科学学报.第43卷.第1期:22-32.2021年1月 Chinese Journal of Engineering,Vol.43,No.1:22-32,January 2021 https://doi.org/10.13374/j.issn2095-9389.2020.07.30.003;http://cje.ustb.edu.cn 赤泥基光催化材料降解水中有机污染物的应用现状及 发展趋势 王亚光,刘晓明2)区 1)北京科技大学治金与生态工程学院.北京1000832)钢铁冶金新技术国家重点实验室,北京100083 ☒通信作者,E-mail:liuxm@ustb.edu.cn 摘要光催化作为一种低成本且高效安全的环境净化技术,被认为是全球能源危机和环境污染问题最好的解决方式之一, 赤泥作为一种固废不仅含有丰富的铁氧化物,且具有较高的比表面积、孔结构等特点,近年来,赤泥基光催化材料在光催化 降解水中有机污染物的研究中备受关注.本文介绍了赤泥的特性,概括了赤泥基光催化材料的制备方法,总结了赤泥基光催 化材料在光催化降解水中有机污染物方面的应用,阐述了赤泥基光催化材料催化降解水中有机污染物的机理,探讨了现有赤 泥基光催化材料存在的问题.最后,基于以往的研究结果对赤泥基光催化材料未来的发展趋势提出了展望及建议. 关键词赤泥:铁氧化物:光催化:有机污染物:降解 分类号TG142.71 Review on the application and development of red mud-based photocatalytic materials for degradation of organic pollutants in water WANG Ya-guang,LIU Xiao-ming2 1)School of Metallurgical and Ecological Engineering,University of Science and Technology Beijing,Beijing 100083,China 2)State Key Laboratory of Advanced Metallurgy,Beijing 100083,China Corresponding author,E-mail:liuxm@ustb.edu.cn ABSTRACT Red mud is a strong alkaline solid waste that is discharged from alumina production process.Its cumulative storage and annual emission are huge with about 0.8-1.5 t of red mud emitted for 1 t of alumina produced.As of 2018,the global cumulative emissions of red mud were about 4 billion t and increased by 120 million tons annually.In China,about 100 million tons of red mud are discharged annually and the comprehensive utilization rate of red mud is about 4%,which is mainly stored in the Red Mud Dam.This often causes serious damage to the surrounding environment,as the red mud with high alkalinity and radioactivity raises the alkalization of soil and leaching into the groundwater through diffusion and infiltration.The comprehensive utilization of red mud is mainly to prepare building materials,ceramics materials,new functional materials,and recover valuable metals.As a low-cost,efficient,and safe environment-friendly environmental purification technology,photocatalytic technology is considered to be one of the best solutions to the severe energy crisis and environmental pollution problems that the world is currently facing.Semiconductor photocatalytic materials (such as Fe2O3,TiOz,ZnO)have been widely studied in the degradation of organic pollutants in water.Red mud is rich in iron oxides and has a high specific surface area and pore structure.In recent years,red mud-based photocatalytic materials have attracted much attention in the photocatalytic degradation of organic pollutants in water.In this paper,the characteristics of red mud were introduced. The preparation methods of red mud-based photocatalytic materials were summarized and its application in the photocatalytic 收稿日期:2020-07-30 基金项目:国家自然科学基金面上资助项目(52074035):中央高校基本科研业务费资助项目(FRF-AT-19-007)
赤泥基光催化材料降解水中有机污染物的应用现状及 发展趋势 王亚光1),刘晓明1,2) 苣 1) 北京科技大学冶金与生态工程学院,北京 100083 2) 钢铁冶金新技术国家重点实验室,北京 100083 苣通信作者,E-mail: liuxm@ustb.edu.cn 摘 要 光催化作为一种低成本且高效安全的环境净化技术,被认为是全球能源危机和环境污染问题最好的解决方式之一. 赤泥作为一种固废不仅含有丰富的铁氧化物,且具有较高的比表面积、孔结构等特点,近年来,赤泥基光催化材料在光催化 降解水中有机污染物的研究中备受关注. 本文介绍了赤泥的特性,概括了赤泥基光催化材料的制备方法,总结了赤泥基光催 化材料在光催化降解水中有机污染物方面的应用,阐述了赤泥基光催化材料催化降解水中有机污染物的机理,探讨了现有赤 泥基光催化材料存在的问题. 最后,基于以往的研究结果对赤泥基光催化材料未来的发展趋势提出了展望及建议. 关键词 赤泥;铁氧化物;光催化;有机污染物;降解 分类号 TG142.71 Review on the application and development of red mud-based photocatalytic materials for degradation of organic pollutants in water WANG Ya-guang1) ,LIU Xiao-ming1,2) 苣 1) School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China 2) State Key Laboratory of Advanced Metallurgy, Beijing 100083, China 苣 Corresponding author, E-mail: liuxm@ustb.edu.cn ABSTRACT Red mud is a strong alkaline solid waste that is discharged from alumina production process. Its cumulative storage and annual emission are huge with about 0.8 –1.5 t of red mud emitted for 1 t of alumina produced. As of 2018, the global cumulative emissions of red mud were about 4 billion t and increased by 120 million tons annually. In China, about 100 million tons of red mud are discharged annually and the comprehensive utilization rate of red mud is about 4%, which is mainly stored in the Red Mud Dam. This often causes serious damage to the surrounding environment, as the red mud with high alkalinity and radioactivity raises the alkalization of soil and leaching into the groundwater through diffusion and infiltration. The comprehensive utilization of red mud is mainly to prepare building materials, ceramics materials, new functional materials, and recover valuable metals. As a low-cost, efficient, and safe environment-friendly environmental purification technology, photocatalytic technology is considered to be one of the best solutions to the severe energy crisis and environmental pollution problems that the world is currently facing. Semiconductor photocatalytic materials (such as Fe2O3 , TiO2 , ZnO) have been widely studied in the degradation of organic pollutants in water. Red mud is rich in iron oxides and has a high specific surface area and pore structure. In recent years, red mud-based photocatalytic materials have attracted much attention in the photocatalytic degradation of organic pollutants in water. In this paper, the characteristics of red mud were introduced. The preparation methods of red mud-based photocatalytic materials were summarized and its application in the photocatalytic 收稿日期: 2020−07−30 基金项目: 国家自然科学基金面上资助项目(52074035);中央高校基本科研业务费资助项目(FRF-AT-19-007) 工程科学学报,第 43 卷,第 1 期:22−32,2021 年 1 月 Chinese Journal of Engineering, Vol. 43, No. 1: 22−32, January 2021 https://doi.org/10.13374/j.issn2095-9389.2020.07.30.003; http://cje.ustb.edu.cn
王亚光等:赤泥基光催化材料降解水中有机污染物的应用现状及发展趋势 23 degradation of organic pollutants in water was summarized.The mechanism of red mud-based photocatalytic materials for degradation of organic pollutants in water was described,and the existing problems of these materials were discussed.Finally,the future development trend of red mud-based photocatalytic materials was proposed based on previous research results. KEY WORDS red mud:iron oxide:photocatalysis:organic pollutants:degradation 随着化工、印染和医药等行业的飞速发展,含 采用物理和化学手段对赤泥改性处理,使改性后 有机污染物的工业废水排放量日益增长-有机 的赤泥具有介孔-大孔的多级孔结构,测试后发现 污染物毒性高且不易被生物降解或消除,在水体 改性后的赤泥比表面积达225m2g,孔体积为 中半衰期长、分散广,可由食物链传递、迁移进入 0.39cm3g,更为重要的是,赤泥具有较高的热稳 人体,易造成癌变或畸形刀因此,开发绿色高效 定性、抗烧结以及抗毒化性能,这些性质有利于赤 的环境污染物治理手段是一种不可避免的趋势 泥作为催化材料载体和催化材料应用于光催化反 近年来,光催化技术因其能利用太阳能来处理环 应过程.国内外众多学者认为赤泥作为一种光催 境中的污染物质而备受关注,光催化降解是通过 化材料在催化降解领域具有较大的潜力,同时已 半导体光催化材料(TiO2、Fe2O3、ZnO等)在适当 有研究表明,赤泥基光催化材料可通过催化作用 波长的光照射下产生活性物质,这些活性物质氧 将水中的有机污染物有效降解去除叫因此,研究 化溶解在水中的有机化合物,可将其分解为CO2、 赤泥基光催化材料对于保护环境,坚持可持续发 HO或毒性较低的化合物.该方法操作简便、反应 展的理念,合理有效利用赤泥资源具有非常重要 条件温和、降解效率高、节能环保,已被国内外专 的意义 家学者认为是净化有机污染物废水的有效技术途 本文中详细综述了赤泥基光催化材料的主要 径之一⑧叨光催化降解有机物核心难题在于如何 制备方法及其对水中有机污染物催化降解的研 设计高效、廉价且稳定的光催化材料.传统的光 究现状,并对其未来的发展趋势提出了展望及 催化材料主要是贵金属和异质结构半导体材料, 建议 由于贵金属的自然储量有限、价格昂贵,异质结构 1赤泥的性质 半导体的结构复杂、制备成本高,严重阻碍了其在 解决环境和能源问题上的应用.近年来,利用工业 赤泥是一种呈暗红色的粉状物质,其颜色会 固废或者天然矿物制备催化材料成为了研究热 随含铁量的不同发生变化.赤泥的物理化学性质 点,如粉煤灰、钢渣及高岭土等.与此同时,由 取决于铝土矿的成分及其生产工艺.由于赤泥含 于粉煤灰、钢渣及高岭土等中特殊的物理结构和 有一定量可溶性的碱金属离子,pH为11~13,呈 化合物,通常也被用于作为催化材料的载体.但寻 强碱性。赤泥的颗粒分散均匀且具有多孔结构,其 求一种自身含有某些活性化学组分的工业固废作 比重约为2840~2870,含水率约35%,平均粒径一 为催化材料则更具有实际应用价值 般小于10m,粒径小于75um的颗粒>90%,比表 赤泥是氧化铝生产过程中排放的一种强碱性 面积约11~30m2g,孔隙率约2.53%~2.95%,平 固体废弃物叫,目前我国赤泥年排放量已超过 均孔径约2.98~3.82nm赤泥主要化学成分(质量 1亿吨,主要以筑坝堆存的方式处置,综合利用率 分数)为Ca0(2%~8%)、Al203(10%~20%)、Fe203 不足4%2赤泥中含有大量的钠离子,长时间堆 (30%~60%)、Si02(3%~20%)、Ti02(微量~10%) 存会渗入地下并使周边环境及地下水碱化,从而 和Na20(2%~10%)四.X射线衍射分析(图1)显 造成不可修复的破坏.赤泥中Fe2O3、TiO2、SiO2 示赤泥的主要矿物相为赤铁矿(a-Fe2O,)、三水铝 和Al2O3含量较高,根据以往的报道,Fe2O3作为一 石(AI(OH3)、石英(SiO2)、方钠石(NagAl6(SiO4)6Cl2) 种光催化材料,由于其独特的特性,如纳米范围、 和锐钛矿(TO2)等.图2是赤泥的扫描电子显 高表面积、超顺磁性、低毒性和化学惰性等,使 微镜(SEM)和主要元素分布图P2 F2O3成为了污水净化常用的光催化材料y同 2光催化反应的基本原理 时,FeO/TiO2、FeO,/AlO3、FeO,/SiO2的异质结 在可见光照射下表现出良好的光催化活性.此外, 光催化整个反应过程中,仅依靠光线辐射,不 赤泥的粒径分布比较均匀,平均粒径小.Cao等 需要额外的能源,也不会产生有毒的副产物.其技
degradation of organic pollutants in water was summarized. The mechanism of red mud-based photocatalytic materials for degradation of organic pollutants in water was described, and the existing problems of these materials were discussed. Finally, the future development trend of red mud-based photocatalytic materials was proposed based on previous research results. KEY WORDS red mud;iron oxide;photocatalysis;organic pollutants;degradation 随着化工、印染和医药等行业的飞速发展,含 有机污染物的工业废水排放量日益增长[1–4] . 有机 污染物毒性高且不易被生物降解或消除,在水体 中半衰期长、分散广,可由食物链传递、迁移进入 人体,易造成癌变或畸形[5–7] . 因此,开发绿色高效 的环境污染物治理手段是一种不可避免的趋势. 近年来,光催化技术因其能利用太阳能来处理环 境中的污染物质而备受关注,光催化降解是通过 半导体光催化材料(TiO2、Fe2O3、ZnO 等)在适当 波长的光照射下产生活性物质,这些活性物质氧 化溶解在水中的有机化合物,可将其分解为 CO2、 H2O 或毒性较低的化合物. 该方法操作简便、反应 条件温和、降解效率高、节能环保,已被国内外专 家学者认为是净化有机污染物废水的有效技术途 径之一[8–9] . 光催化降解有机物核心难题在于如何 设计高效、廉价且稳定的光催化材料. 传统的光 催化材料主要是贵金属和异质结构半导体材料, 由于贵金属的自然储量有限、价格昂贵,异质结构 半导体的结构复杂、制备成本高,严重阻碍了其在 解决环境和能源问题上的应用. 近年来,利用工业 固废或者天然矿物制备催化材料成为了研究热 点,如粉煤灰、钢渣及高岭土等[10] . 与此同时,由 于粉煤灰、钢渣及高岭土等中特殊的物理结构和 化合物,通常也被用于作为催化材料的载体. 但寻 求一种自身含有某些活性化学组分的工业固废作 为催化材料则更具有实际应用价值. 赤泥是氧化铝生产过程中排放的一种强碱性 固体废弃物[11] ,目前我国赤泥年排放量已超过 1 亿吨,主要以筑坝堆存的方式处置,综合利用率 不足 4% [12] . 赤泥中含有大量的钠离子,长时间堆 存会渗入地下并使周边环境及地下水碱化,从而 造成不可修复的破坏. 赤泥中 Fe2O3、TiO2、SiO2 和 Al2O3 含量较高,根据以往的报道,Fe2O3 作为一 种光催化材料,由于其独特的特性,如纳米范围、 高表面积、超顺磁性、低毒性和化学惰性等,使 Fe2O3 成为了污水净化常用的光催化材料[13–19] . 同 时 , Fe2O3 /TiO2、Fe2O3 /Al2O3、Fe2O3 /SiO2的异质结 在可见光照射下表现出良好的光催化活性. 此外, 赤泥的粒径分布比较均匀,平均粒径小. Cao 等[20] 采用物理和化学手段对赤泥改性处理,使改性后 的赤泥具有介孔–大孔的多级孔结构,测试后发现 改性后的赤泥比表面积达 225 m2 ·g–1,孔体积为 0.39 cm3 ·g–1 . 更为重要的是,赤泥具有较高的热稳 定性、抗烧结以及抗毒化性能,这些性质有利于赤 泥作为催化材料载体和催化材料应用于光催化反 应过程. 国内外众多学者认为赤泥作为一种光催 化材料在催化降解领域具有较大的潜力,同时已 有研究表明,赤泥基光催化材料可通过催化作用 将水中的有机污染物有效降解去除[21] . 因此,研究 赤泥基光催化材料对于保护环境,坚持可持续发 展的理念,合理有效利用赤泥资源具有非常重要 的意义. 本文中详细综述了赤泥基光催化材料的主要 制备方法及其对水中有机污染物催化降解的研 究现状,并对其未来的发展趋势提出了展望及 建议. 1 赤泥的性质 赤泥是一种呈暗红色的粉状物质,其颜色会 随含铁量的不同发生变化. 赤泥的物理化学性质 取决于铝土矿的成分及其生产工艺. 由于赤泥含 有一定量可溶性的碱金属离子,pH 为 11~13,呈 强碱性. 赤泥的颗粒分散均匀且具有多孔结构,其 比重约为 2840~2870,含水率约 35%,平均粒径一 般小于 10 μm,粒径小于 75 μm 的颗粒>90%,比表 面积约 11~30 m2 ·g–1,孔隙率约 2.53%~2.95%,平 均孔径约 2.98~3.82 nm[21] . 赤泥主要化学成分(质量 分数)为 CaO(2%~8%)、Al2O3(10%~20%)、Fe2O3 (30%~60%)、SiO2(3%~20%)、TiO2(微量~10%) 和 Na2O(2%~10%) [12] . X 射线衍射分析(图 1)显 示赤泥的主要矿物相为赤铁矿(α-Fe2O3)、三水铝 石(Al(OH)3)、石英(SiO2)、方钠石(Na8Al6 (SiO4 )6Cl2) 和锐钛矿(TiO2)等[21] . 图 2 是赤泥的扫描电子显 微镜(SEM)和主要元素分布图[22] . 2 光催化反应的基本原理 光催化整个反应过程中,仅依靠光线辐射,不 需要额外的能源,也不会产生有毒的副产物. 其技 王亚光等: 赤泥基光催化材料降解水中有机污染物的应用现状及发展趋势 · 23 ·
24 工程科学学报,第43卷,第1期 满电子的低价能带(VB)和一个高能空导带(CB) 构成,因此,半导体是光敏的.图3展示了半导体 SO) 产生光催化自由基的基本反应过程,光催化自由 基的分解步骤如下:(1)具有一定能量的光子被 半导体吸收:(2)被吸收的光子能量大于半导体带 . 隙能(Ee),导致CB和VB中相应的空穴中形成电 子:(3)产生的电子空穴对会迁移到半导体表面进 10 20 30405060 70 2% 行氧化还原反应,同时会在纳秒内发生快速复合 图1赤泥的X射线衍射图四 Fig.1 X-ray diffraction patterns of red mudeu 3赤泥基光催化材料降解水中有机污染物 研究进展 术核心是光催化材料,目前为止,已有大量的基于 各种半导体光催化高级氧化技术被设计用于水处 3.1赤泥基光催化材料的制备 理.一般来说,半导体由于其能带结构是由一个充 与常见或商业的光催化材料相比,赤泥原料 (a) (b) 14m (Na) (AI) (S (Ca) (Ti) (Fe) 图2赤泥的SEM(a和b)及主要的元素分布图四 Fig.2 SEM(aand b)and element distribution images of red mud Reduction: Conduction band Electron(e) e 02te→-02 ● Superoxide 个 radical Photon Band gap(E) irradiation Oxidation: Hole(h") H2O+h→OH Valence band Hydroxyl radical 图3半导体的光催化反应过程的示意图P Fig.3 Schematic of the photocatalytic reaction process of semiconductor
术核心是光催化材料,目前为止,已有大量的基于 各种半导体光催化高级氧化技术被设计用于水处 理. 一般来说,半导体由于其能带结构是由一个充 满电子的低价能带(VB)和一个高能空导带(CB) 构成,因此,半导体是光敏的. 图 3 展示了半导体 产生光催化自由基的基本反应过程,光催化自由 基的分解步骤如下[23] :(1)具有一定能量的光子被 半导体吸收;(2)被吸收的光子能量大于半导体带 隙能(Eg),导致 CB 和 VB 中相应的空穴中形成电 子;(3)产生的电子空穴对会迁移到半导体表面进 行氧化还原反应,同时会在纳秒内发生快速复合. 3 赤泥基光催化材料降解水中有机污染物 研究进展 3.1 赤泥基光催化材料的制备 与常见或商业的光催化材料相比,赤泥原料 10 20 30 40 Relative intensity 2θ/(º) 50 60 70 ~ & @ @ ^ # % * * * * * $ * * * — Fe2O3 & — Al(OH)3 @ — NaAlO2 # — CaCO3 % — SiO2 $ — Ca2(SiO4) ^ — TiO2 ~ — Na8Al6(SiO4)6Cl2 图 1 赤泥的 X 射线衍射图[21] Fig.1 X-ray diffraction patterns of red mud[21] (a) (b) (Na) (Al) (Si) (Ca) (Ti) (Fe) 1 μm 图 2 赤泥的 SEM(a 和 b)及主要的元素分布图[22] Fig.2 SEM (a and b) and element distribution images of red mud[22] Conduction band Reduction: Electron (e− ) Superoxide radical Photon irradiation Band gap (Eg ) Oxidation: + h + Valence band Hydroxyl radical e − O2+e−→·O2 − H2O+h Hole (h+ ) +→·OH − 图 3 半导体的光催化反应过程的示意图[23] Fig.3 Schematic of the photocatalytic reaction process of semiconductor[23] · 24 · 工程科学学报,第 43 卷,第 1 期
王亚光等:赤泥基光催化材料降解水中有机污染物的应用现状及发展趋势 25. 的表面基团少,可附着的活性位点少,比表面积还 化效率,赤泥基光催化材料的制备方法见表1.其 不够大,光催化性能较差,极大的限制了它的应 主要方法有煅烧改性、酸改性、与其他材料复合 用.因此,研究者对赤泥原料进行改性以提高其催 改性等 表1赤泥基光催化材料的制备方法 Table 1 Preparation methods of red mud-based photocatalytic materials Name Methods Main experimental steps Reference Red mud photocatalytic Calcination The red mud photocatalyst material was obtained by drying,grinding,sieving material modification calcination,and grinding for red mud. [24 Red mud photocatalytic Acid modification The red mud photocatalyst material was prepared by acid leaching,neutralization, material hydrothermal synthesis,and washing for red mud. [25) Red mud photocatalytic material Acid modification The red mud photocatalysis material was obtained by drying,grinding,acid leaching. and washing for red mud. [26 Red mud photocatalytic Calcination-acid The red mud photocatalytic material was prepared by drying,grinding,acid leaching material modification and calcination for red mud. [27 Red mud-graphene oxide Composite The red mud-graphene oxide photocatalytic material was prepared by drying,grinding, photocatalytic material modification compounding with graphene,and filtering for red mud. [28 Red mud-Cphotocatalytic Composite The red mud-C photocatalytic material was obtained by drying,washing,compounding [29 matenal modifcation with ethanol,calcination,and grinding for red mud. Red mud-SiO, Composite The red mud-SiO photocatalytic material was prepared by acid leaching.washing. photocatalytic material modification compounding with cetyltrimethylammonium bromide,ammonia water and ethyl [30] orthosilicate,and calcination for red mud. Red mud-glass fiber Composite The red mud-glass fiber photocatalytic material was prepared by dispersing,smearing photocatalytic material [31] modification on the surface of fiber glass,and calcination for red mud. Red mud-Fe Composite The red mud-Fe photocatalytic material was prepared by dispersing,compounding with [32] photocatalytic material modification FeCl;6H2O,drying,washing,calcination,and grinding for red mud. Red mud-Co Composite The red mud-Co photocatalytic material was prepared by dealkalization,calcination, photocatalytic material modification compounding with Co(NO3)26H2O,drying,calcination,and grinding for red mud. [33) Red mud-TiO2 Composite The red mud-TiO,photocatalytic material was prepared by acid leaching photocatalytic material [34 modification compounding with TiO,,dispersing,filtering,calcination,and grinding for red mud. Red mud-g-C3N4 Composite The red mud-g-C3N4 photocatalytic material was prepared by drying,grinding [35) photocatalytic material modification compounding with melamine,calcination,and grinding for red mud. Red mud-C-TiO, The red mud-C-TiO photocatalytic material was obtained by calcination reduction, Composite photocatalytic material modification compounding with acetone,compounding with TiOz,drying,calcination, [36 and grinding for red mud. 煅烧改性是指将赤泥在不同温度下进行煅 位.酸改性也可去除分布于赤泥结构通道中的杂 烧,使其内部发生一系列的物理化学反应,直接改 质,从而疏通赤泥的内部孔道,增大孔径及微孔 变赤泥结构,增加其比表面积、孔隙率及晶体结 率,提高污染物的接触面积.目前酸改性用的酸主 构,从而达到改善赤泥理化性能的目的.煅烧改性 要有盐酸、硫酸及硝酸等.然而,当酸浓度过大 可使赤泥表面颗粒细化,失去自由水、结晶水及化 时,酸活化可能会溶解部分硅铝酸盐,导致赤泥大 合水等,OH骨架结构被破坏,活性点位增加,提高 孔率增加、表面活性点位减少,影响其光催化性 与污染物的接触面积,使赤泥基光催化材料的催 能.Ma等2研究发现,经盐酸改性后的赤泥与原 化性能发生变化.Shi等P研究发现,赤泥分别经 赤泥相比,改性赤泥的裂缝尺寸减小,且表面出现 250、350和450℃缎烧后表面出现了更多孔隙, 了许多近似球形的颗粒(见图5),BET(Brunauer- 表面粗糙度和比表面积均有增大,但温度过高时, Emmett-Teller)结果显示改性赤泥的比表面积为 颗粒会出现团聚(见图4),XRD结果显示结晶度 317.14m2g,比表面积高出原赤泥约40倍 明显提高且晶粒尺寸减小 复合改性是指将赤泥掺杂/负载具有光催化性 酸改性是指将赤泥与酸溶液在一定条件下进 能的金属及其氧化物或将赤泥与导电性能良好的 行反应,以改善赤泥的理化性能.酸改性可显著改 材料复合以提升赤泥基光催化材料的催化性能 善赤泥的比表面积及孔结构,主要原因是酸处理 等.针对赤泥因表面碱金属盐造成的酸性位点含 把附着于赤泥表面、层间的Na、Mg+、K、Ca2+及 量降低的现象,可以选用酸位点较多、光催化效果 CO-等离子转变为可溶性的盐或气体而分离,削 好的活性组分进行改性,以提高催化材料对有机 弱了层间的键能,使层间距增大,形成具有微孔网 污染物的吸附性能和光催化降解性能.负载金属 络结构、比表面积大的多孔结构及较多的活性点 氧化物的催化材料一般常用的活性组分为钒
的表面基团少,可附着的活性位点少,比表面积还 不够大,光催化性能较差,极大的限制了它的应 用. 因此,研究者对赤泥原料进行改性以提高其催 化效率,赤泥基光催化材料的制备方法见表 1. 其 主要方法有煅烧改性、酸改性、与其他材料复合 改性等. 表 1 赤泥基光催化材料的制备方法 Table 1 Preparation methods of red mud-based photocatalytic materials Name Methods Main experimental steps Reference Red mud photocatalytic material Calcination modification The red mud photocatalyst material was obtained by drying, grinding, sieving, calcination, and grinding for red mud. [24] Red mud photocatalytic material Acid modification The red mud photocatalyst material was prepared by acid leaching, neutralization, hydrothermal synthesis, and washing for red mud. [25] Red mud photocatalytic material Acid modification The red mud photocatalysis material was obtained by drying, grinding, acid leaching, and washing for red mud. [26] Red mud photocatalytic material Calcination-acid modification The red mud photocatalytic material was prepared by drying, grinding, acid leaching, and calcination for red mud. [27] Red mud–graphene oxide photocatalytic material Composite modification The red mud–graphene oxide photocatalytic material was prepared by drying, grinding, compounding with graphene, and filtering for red mud. [28] Red mud–Cphotocatalytic material Composite modification The red mud–C photocatalytic material was obtained by drying, washing, compounding with ethanol, calcination, and grinding for red mud. [29] Red mud–SiO2 photocatalytic material Composite modification The red mud–SiO2 photocatalytic material was prepared by acid leaching, washing, compounding with cetyltrimethylammonium bromide, ammonia water and ethyl orthosilicate, and calcination for red mud. [30] Red mud–glass fiber photocatalytic material Composite modification The red mud–glass fiber photocatalytic material was prepared by dispersing, smearing on the surface of fiber glass, and calcination for red mud. [31] Red mud–Fe photocatalytic material Composite modification The red mud–Fe photocatalytic material was prepared by dispersing, compounding with FeCl3 ·6H2O, drying, washing, calcination, and grinding for red mud. [32] Red mud–Co photocatalytic material Composite modification The red mud–Co photocatalytic material was prepared by dealkalization, calcination, compounding with Co(NO3 )2 ·6H2O, drying, calcination, and grinding for red mud. [33] Red mud–TiO2 photocatalytic material Composite modification The red mud–TiO2 photocatalytic material was prepared by acid leaching, compounding with TiO2 , dispersing, filtering, calcination, and grinding for red mud. [34] Red mud–g-C3N4 photocatalytic material Composite modification The red mud–g-C3N4 photocatalytic material was prepared by drying, grinding, compounding with melamine, calcination, and grinding for red mud. [35] Red mud–C–TiO2 photocatalytic material Composite modification The red mud–C–TiO2 photocatalytic material was obtained by calcination reduction, compounding with acetone, compounding with TiO2 , drying, calcination, and grinding for red mud. [36] 煅烧改性是指将赤泥在不同温度下进行煅 烧,使其内部发生一系列的物理化学反应,直接改 变赤泥结构,增加其比表面积、孔隙率及晶体结 构,从而达到改善赤泥理化性能的目的. 煅烧改性 可使赤泥表面颗粒细化,失去自由水、结晶水及化 合水等,OH–骨架结构被破坏,活性点位增加,提高 与污染物的接触面积,使赤泥基光催化材料的催 化性能发生变化. Shi 等[24] 研究发现,赤泥分别经 250、350 和 450 ℃ 煅烧后表面出现了更多孔隙, 表面粗糙度和比表面积均有增大,但温度过高时, 颗粒会出现团聚(见图 4),XRD 结果显示结晶度 明显提高且晶粒尺寸减小. CO2− 3 酸改性是指将赤泥与酸溶液在一定条件下进 行反应,以改善赤泥的理化性能. 酸改性可显著改 善赤泥的比表面积及孔结构,主要原因是酸处理 把附着于赤泥表面、层间的 Na+、Mg2+、K +、Ca2+及 等离子转变为可溶性的盐或气体而分离,削 弱了层间的键能,使层间距增大,形成具有微孔网 络结构、比表面积大的多孔结构及较多的活性点 位. 酸改性也可去除分布于赤泥结构通道中的杂 质,从而疏通赤泥的内部孔道,增大孔径及微孔 率,提高污染物的接触面积. 目前酸改性用的酸主 要有盐酸、硫酸及硝酸等. 然而,当酸浓度过大 时,酸活化可能会溶解部分硅铝酸盐,导致赤泥大 孔率增加、表面活性点位减少,影响其光催化性 能. Ma 等[26] 研究发现,经盐酸改性后的赤泥与原 赤泥相比,改性赤泥的裂缝尺寸减小,且表面出现 了许多近似球形的颗粒(见图 5) ,BET(BrunauerEmmett-Teller) 结果显示改性赤泥的比表面积为 317.14 m2 ·g–1,比表面积高出原赤泥约 40 倍. 复合改性是指将赤泥掺杂/负载具有光催化性 能的金属及其氧化物或将赤泥与导电性能良好的 材料复合以提升赤泥基光催化材料的催化性能 等. 针对赤泥因表面碱金属盐造成的酸性位点含 量降低的现象,可以选用酸位点较多、光催化效果 好的活性组分进行改性,以提高催化材料对有机 污染物的吸附性能和光催化降解性能. 负载金属 氧化物的催化材料一般常用的活性组分为钒、 王亚光等: 赤泥基光催化材料降解水中有机污染物的应用现状及发展趋势 · 25 ·