图像: 0 -10 -0.5 00 05 1.0 1.3稳定节点 程序: A=(《-1,0,(0,-2): StreanP1ot[.{u,v3,{u,-1,1),(w,-1,1, StreamScale(Full,A11,0.05),Streanstyle(Arrowheads[(0)],Black), VectorPoints -Automatic,Vectorstyle-Blue,VectorScale-10.07)] 图像:
3 图像: 1.3 稳定节点 程序: 图像:
1.4鞍点 程序: A=(1,03,(0,-1: Streanp1ot[t.{u,v3,{u,-1,1,(w,-1,1, StreanScale(Full,All,0.05),Streanstyle(Arrowheads [()]Black), VectorPoints-Automatic.Vectorstyle-Blue.VectorScale-10.07)1 图像: 10上 -1.0 1.5单向节点 程序: a={-1,0,{1,-1: StreanP1ot[(a.(u,v,(u,-1,1,(v,-1,1, StreanScale(Full,A11,0.05),Streanstyle(Arrowheads[(0)],Black), VectorPoints→Automatic,VectorStyle→B1ue,VectorScale→f0.073
4 1.4 鞍点 程序: 图像: 1.5 单向节点 程序:
图像: -10 0.0 1.6中心 程序: a={0,-11,0: streamPlot[(A.(u,v)),(u,-1,1),(v,-1,1), StreanScale-(Full,A11,0.05),Streamstyle(rrowheads[f0)1,Black) VectorPoints→utomatic,VectorStyle→B1ue,VectorScale→t.07] 图像:
5 图像: 1.6 中心 程序: 图像:
1.7不稳定焦点 程序: A={{1,-1},{1,1}: StreamP:1ot[{A.{u,v)》,{u,-1,1),{v,-1,1}, StreamScale(Full,All,0.05),StreamStyle(Arrowheads[(0)],Black), VectorPoints→Automatic,VectorStyle→B1ue,VectorScale→《0.07}] 图像: 10 01 -0 -1.0 -1.0 -0.5 0.0 03 1.0 1.8稳定焦点 程序: a={{-1,-1),{1,-1): Streaml1ot[{A.{u,v},{u,-1,1},{v,-1,1}, StreamScale(Full,All,0.05),Streamstyle(Arrowheads[f0)],Black) VectorPoints-Automatic,VectorStyleBlue,VectorScale(0.07)] 6
6 1.7 不稳定焦点 程序: 图像: 1.8 稳定焦点 程序:
二、线性系统+高阶扰动后 ()=()n=om 奇点局部拓扑结构的变化 该实验的目的: 。让学生了解 。双曲线性奇点的结构稳定性和 。非双曲线性奇点的分支现象 张样 通大学数 系统与常微分方程实验深教学材料
!Ç5X⁄ + p6ƒ x˙ y˙ ! = A x y ! +f(x, y), f(x, y) = O(|(x, y)| 2 ), ¤:¤‹ˇ¿(Cz T¢8µ 4Æ) ) VÇ5¤:(½5⁄ öVÇ5¤:©|yñ ‹åµ˛°œåÆÍÆX ƒÂX⁄Ü~á©êß¢ëÆ·