(数学模些) 第四章数学规划模型 41奶制品的生产与销售 42自来水输送与货机装运 43汽车生产与原油采购 4.4接力队选拔和选课策略 45饮料厂的生产与检修 4.6钢管和易拉罐下料
第四章 数学规划模型 4.1 奶制品的生产与销售 4.2 自来水输送与货机装运 4.3 汽车生产与原油采购 4.4 接力队选拔和选课策略 4.5 饮料厂的生产与检修 4.6 钢管和易拉罐下料
(数学模些) 数学规划模型 实际问题中Mm(或Max)z=f(x),x=(x1…xn) 的优化模型 s.g(x)≤0,i=1,2,…m x决策变量x)~目标函数g/x)≤0约束条件 决策变量个数n和 数 多元函数约束条件个数m较大学线性规划 条件极值 最优解在可行域 规非线性规划 划整数规划 的边界上取得 重点在模型的建立和结果的分析
数学规划模型 st g x i m Min Max z f x x x x i T n L L . . ( ) 0, 1,2, ( ) ( ), ( , ) 1 ≤ = 实际问题中 或 = = 的优化模型 gi x~决策变量 f(x)~目标函数 (x)≤0~约束条件 决策变量个数n和 约束条件个数m较大 数 学 规 划 线性规划 非线性规划 整数规划 多元函数 条件极值 最优解在可行域 的边界上取得 重点在模型的建立和结果的分析
(数 41奶制品的生产与销售 企业生产计划 空间层次 工厂级:根据外部需求和内部设备、人力、原料等 条件,以最大利润为目标制订产品生产计划; 车间级:根据生产计划、工艺流程、资源约束及费 用参数等,以最小成本为目标制订生产批量计划。 时间层次 若短时间内外部需求和内部资源等不随时间变化,可 制订单阶段生产计划,否则应制订多阶段生产计划。 本节课题
4.1 奶制品的生产与销售 企业生产计划 空间层次 工厂级:根据外部需求和内部设备、人力、原料等 条件,以最大利润为目标制订产品生产计划; 车间级:根据生产计划、工艺流程、资源约束及费 用参数等,以最小成本为目标制订生产批量计划。 时间层次 若短时间内外部需求和内部资源等不随时间变化,可 制订单阶段生产计划,否则应制订多阶段生产计划。 本节课题
§1奶制品的生产与销像型 例1加工奶制品的生产计划 1桶 12小时 3公斤A1→获利24元/公斤 牛奶或 8小时4公厅A2 获利16元/公斤 每天:50桶牛奶时间480小时至多加工100公斤A1 制订生产计划,使每天获利最大 35元可买到1桶牛奶,买吗?若买,每天最多买多少? 可聘用临时工人,付出的工资最多是每小时几元? A1的获利增加到30元/公斤,应否改变生产计划?
§1 奶制品的生产与销售 例1 加工奶制品的生产计划 1桶 牛奶 3公斤A1 12小时 8小时 4公斤A2 或 获利24元/公斤 获利16元/公斤 每天: 50桶牛奶 时间480小时 至多加工100公斤A1 制订生产计划,使每天获利最大 • 35元可买到1桶牛奶,买吗?若买,每天最多买多少? • 可聘用临时工人,付出的工资最多是每小时几元? • A1的获利增加到 30元/公斤,应否改变生产计划?
数学模些) 牛奶12小份3公斤A 1桶 获利24元/公斤 8小时4公厅A2 获利16元/公斤 每天50桶牛奶时间480小时至多加工100公斤A1 决策变量x桶牛奶生产A1x桶牛奶生产A2 目标函数获利24×3x1获利16×4x2 每天获利Maxz=72x1+64x2 线性 原料供应 x1+x,≤50 规划 约束条件劳动时间12x8+8x2≤480模型 加工能力 3x,<100 (LP) 非负约束 x,x2≥0
1桶 牛奶 3公斤A1 12小时 8小时 4公斤A2 或 获利24元/公斤 获利16元/公斤 每天 50桶牛奶 时间480小时 至多加工100公斤A1 x1桶牛奶生产A1 x 决策变量 2桶牛奶生产A2 获利 24×3x1 获利 16×4 x 目标函数 2 72 1 64 2 每天获利 Max z = x + x 线性 规划 模型 (LP) 50 原料供应 x1 + x2 ≤ 12x1 + 8x2 ≤ 480 3 100 x1 ≤ , 0 x1 x2 ≥ 约束条件 劳动时间 加工能力 非负约束