第一章 第十节 冈区间上连续品嶽的性质 最值定理 二、介值定理 三、一致连续性 学 HIGH EDUCATION PRESS 机动目录上页下页返回结
第十节 一、最值定理 二、介值定理 *三、一致连续性 机动 目录 上页 下页 返回 结束 闭区间上连续函数的性质 第一章
最值定理 定理1在闭区间上连续的函数在该区间上一定有最大 值和最小值. 即:设f(x)∈C[a,b],则彐5122∈[a,b,使 f(s=min f(r) a<x<b y y=f(x) f(s2)= max f(x) (证明略) o as b x 注意:若函数在开区间上连续,或在闭区间内有间断 点,结论不一定成立 HIGH EDUCATION PRESS 机动目录上页下页返回结束
注意: 若函数在开区间上连续, 结论不一定成立 . 一、最值定理 定理1.在闭区间上连续的函数 即: 设 f (x)C[a, b], o x y a b y = f (x) 1 2 则 , [ , ], 1 2 a b 使 ( ) min ( ) 1 f f x a xb = ( ) max ( ) 2 f f x a xb = 值和最小值. 或在闭区间内有间断 在该区间上一定有最大 (证明略) 点 , 机动 目录 上页 下页 返回 结束
例如, ,y=x,x∈(O,1 无最大值和最小值 又如, x+1,0≤x<1 f(x) x+3.1<x<2 也无最大值和最小值 O HIGH EDUCATION PRESS 机动目录上页下页返回结
例如, 无最大值和最小值 o x y 1 1 x o y 1 1 2 2 也无最大值和最小值 又如, 机动 目录 上页 下页 返回 结束
推论.在闭区间上连续的函数在该区间上有界 证:设f(x)∈C[a,b],由定理1可知有 M= max f(x),m= min f(x)yt x∈[a,b] x∈[a,b y=f(x) 故x∈[a,b],有m≤f(x)≤M, 因此f(x)在[a,b上有界 o a5 52 b 二、介值定理 定理2(零点定理)f(x)∈ Clabs, yy=f(x 且f(a)f(b)<0 至少有一点 b ∈(a,b),使f()=0.(证明略) HIGH EDUCATION PRESS 机动目录上页下页返回结
o b x y a y = f (x) 1 2 m M 推论. 由定理 1 可知有 max ( ) , [ , ] M f x x a b = min ( ) [ , ] m f x x a b = 证: 设 上有界 . 二、介值定理 定理2. ( 零点定理 ) 且 至少有一点 使 x y o a b y = f (x) 机动 目录 上页 下页 返回 结束 ( 证明略 ) 在闭区间上连续的函数在该区间上有界
定理3.(介值定理)设f(x)∈C[a,b],且f(a)=A, f(b)=B,A≠B,则对A与B之间的任数C,至少有 一点∈(a,b)使∫(2)=C y=f(x) 证:作辅助函数 B p(x)=f(x)-c 则(x)∈C[a,b],且 b qp(a)y(b)=(4-C(B-C)<0 故由零点定理知至少有一点∈(a,b)使9(5)=0, 即 f(5)=C 推论:在闭区间上的连续函数必取得介于最小值与最 大值之间的任何值 学 HIGH EDUCATION PRESS 机动目录上页下页返回结
定理3. ( 介值定理 ) 设 f (x)C[a, b], 且 f (a) = A, f (b) = B, A B , 则对 A 与 B 之间的任一数 C , 一点 证: 作辅助函数 (x) = f (x) −C 则 (x)C[a, b] , 且 (a) (b) = (A−C)(B −C) 故由零点定理知, 至少有一点 使 即 推论: A o b x y a y = f (x) B C 使 至少有 在闭区间上的连续函数必取得介于最小值与最 大值之间的任何值 . 机动 目录 上页 下页 返回 结束