A summary:线性相位FR滤波器的四种情况h(n) = h(N-n-1)h(n)奇数NH(w)=a(n)cos(wn)中(w)=-w(N-1)/21)时域:a(n)Φ(w)1)2元1-2元7a(0) = h[(N -1) /2)h(n) = ±h(N - n -1)(N-1)/2a(n)= 2h[(N -1)/2-n),n =1 ~(N -I)/2偶数N2频域:H(w)=b(n)cos[w(n-1 / 2))h(n)N-12(N-1)元b(n)H(ew)= H(w)eH(2) = (-1)° 2-(N-1) H(z-1)b(0) = 0TN/2b(n)=2h[N/2-n],n=1~N /2点线h(n) = -h(N-n-1)性相位FIR数字滤波器特Hw)为实丽数1/奇数Nh(n)H(w)=c(n)sin(wn)n)偶对称:L=0中(w)=亦/2-w(N-1)/2hn)奇对称:L=1Φ(w)c(n)3)元/2c(0) = 03零点:2元T(N-1)/2c(n) = 2h[(N - 1)/2-n),n = 1 ~(N-I)/201偶数N成倒易对出现H(w) =d(n)sin[w(n - 1 / 2)]h(n)(N3/2)元d(n)4)元2d(0) = 0IN/2d(n)=2h[N/2-nl,n=1~N/2
A summary: ① 时域: ② 频域: ③ 零点: h(n) = ±h(N -n -1) 1 2 2 1 1 1 ( ) ( ) ( ) ( ) ( ) ( ) L N j j L N H e H e H z z H z p w w w ç - ÷ - - - - = = - 为实函数 偶对称:L = 0 奇对称:L = 1 线性相位FIR滤波器的四种情况 h(n) = h(N-n-1) h(n) = -h(N-n-1) 1) 2) 3) 4) ()=-(N-1)/2 ()=/2-(N-1)/2 2 0 -(N-1) 2 0 -(N-3/2) () () /2 ( ) [( )/ ] ( ) [( )/ ], ( )/ a h N a n h N n n N = - = - - = - 0 1 2 2 1 2 1 1 2 ( ) ( ) [ / ], / b b n h N n n N = = - = 0 0 2 2 1 2 ( ) ( ) [( )/ ], ( )/ c c n h N n n N = = - - = - 0 0 2 1 2 1 1 2 ( ) ( ) [ / ], / d d n h N n n N = = - = 0 0 2 2 1 2 h(n) a(n) h(n) b(n) (N-1)/2 N/2 h(n) c(n) (N-1)/2 h(n) d(n) N/2 p 2p w p 2p w p w 2p p w 2p 1 2 0 ( )/ ( ) ( )sin( ) N n H w c n wn - = = å 2 0 1 2 / ( ) ( )sin[ ( / )] N n H w d n w n = = å - 1 2 0 ( )/ ( ) ( )cos( ) N n H w a n wn - = = å 2 0 1 2 / ( ) ( )cos[ ( / )] N n H w b n w n = = å - 奇数N 奇数N 偶数N 偶数N
频率抽样两种方法N=8:偶数jIm[z]jIm[z]N=8:偶数2元NRe[z]Re[z]N元N=9:奇数jIm[z]jIm[z]N=9:奇数Re[z]Re[z]It maybe closertoacertain edge frequencyII型型
2 N -1 1 Re[z] N=8:偶数 jIm[z] 2 N -1 1 Re[z] N=9 jIm[z] :奇数 2 N -1 1 Re[z] N=8:偶数 jIm[z] N 2 N -1 1 Re[z] N=9:奇数 jIm[z] N It may be closer to a certain edge frequency 频率抽样两种方法
1)第一种频率抽样H(k)= H.(k)= Hdk = 0.1.....N - 122元k27N+jIm[z]N-8:偶数NN-IH(k)1-Z系统函数:TH(z)NWk-fwN+Re[Z]sinTR2N122频率响应:HkHeCeNkwk=0sin2N2)第二种频率抽样H(k)k = 0,1,...,N - 1=HHQ2元k+NN jIm[z]N=8属数N-1H-N1+z系统函数:H(z) =DN27+k=0pp.245eZwNRe[z]+1cOSN-1H2N-Ike1频率响应:H2>eN1k=0w元kjsin22N
1)第一种频率抽样 系统函数: 频率响应: 2)第二种频率抽样 系统函数: 频率响应: -1 2 N -1 1 Re[z] jIm[z] N=8:偶数 2 N 1 Re[z] jIm[z] N=8:偶数 N ( ) ( ) ( ) ( ) , ,., j k N j d d d k z e N H k H k H z p H e k N w p w= = = = 2 = 2 = 0 1 - 1 1 1 0 1 1 ( ) ( ) N N k k N z H k H z N W z - - - - = - = å - ( ) ( ) 1 1 2 0 1 2 2 sin sin N N k j j j N k N H e e H k e N k N p w w w w p - ç - ÷ - - = ç ÷ = ç - ÷ å ( ) ( ) ( ) ( ) , ,., j k N N j d d k z e N N H k H z p p H e k N w p p w + = + = = 2 = 2 = 0 1 - 1 ( ) 1 2 1 0 2 1 1 1 ( ) N N j k k N z H k H z N e z p - - ç ÷ = + - + = - å ( ) ( ) 1 2 1 1 2 0 2 1 2 2 cos sin j k N N j N j k N H k e H e e N j k N p w w w w p ç ÷ - + - ç - ÷ - = ç ÷ = - ç + ÷ å
线性相位约束条件第一种抽样方法h(n)中心奇对称h(n)中心偶对称h(n)中心偶对称h(n)中心奇对称N为奇数N为奇数N为偶数N为偶数IH(k)|=|H(N-)IH()|=[H(N-)[H(k) /=|H(N-k) [[H(k) /=|H(N-k)|幅度k = 0~(N /2-1)k=0~(N-1)/2k = 0~(N/2- 1)k = 0 ~ (N -1)/2约東IH(O) /= 0IH(0) /= 0[H(N /2) /= 0p(k) = -(N -k)(k) = -(N - k)p(k) =-p(N-k)p(k) = -P(N - k)相=-k(1-N-1)元位= -k(1 - N-1)=-k(1 - N-1)π=-k(1-N-1)约k = 0~(N /2-1)k= 0~(N-1)/2k= 0~(N /2-1)k= 0 ~ (N -1)/2東(N /2) = 0
线性相位约束条件
对于第一种抽样方式,当h(n)为实数时h(n) = h*(n)h(n)H(k) = DFT[h(n)]根据P91(3-79)[H()]H*(N -k) = DFT[h*(n)于是H(k) = H*(N-k)(p(k)IH(k)/=|H(N-k)|0(k) = arg[H(k)] = -0(N - k)023N中心以k=2
于是对于第一种抽样方式,当h(n)为实数时 - 1 0 1 2 3 4 5 6 05 1 0 1 5 2 0- 1 0 1 2 3 4 5 6 012345 h(n) |H(k)| -1 0 1 2 3 4 5 6 - 3 - 2 - 10123 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 012345 (k) H(k) = DFT[h(n)] H (k) H (N k) * = - | ( )| | ( )| ( ) arg[ ( )] ( ) H k H N k k H k N k N k q q = - = = - - = 2 以 中心 h (n) h (n) * = 根据P91 (3-79) H (N k) DFT[h (n)] * * - =