step2若a2保留方程组中第-及第二个 方程,消去其余方程中变量x3得同解方程组 aux++auxxt+ai=b 2) (2) 2) (2) CL22x2+a23x3+…+a2 b (3) CL33X3+…+a3 b C n3∽3 an b
(2) 22 Step2.若 a ,保留方程组中第一及第二个 0 方程,消去其余方程中变量x3 ,得同解方程组 (1) (1) (1) (1) (1) 11 1 12 2 13 3 1 1 (2) (2) (2) (2) 22 2 23 3 2 2 (3) (3) (3) 33 3 3 3 ( 3 3 n n n n a x a x a x a b a x a x a b a x a b + + + + = + + + = + + = ) (3) (3) a x a b 3 nn n + + =
记作Ax=其中 12 In 0 (2) 2) (2) n b2 a as,b=6 (3) b 3) 2) .ob 2) -au -lisa,.br=b 2) a2 3,4
(1) (1) (1) (1) (1) 11 12 13 1 1 (2) (2) (2) (2) 22 23 2 2 (3) (3) (3) (3) (3) 33 3 3 (3) (3) (3) 3 0 0 0 0 0 n n n n nn n a a a a b a a a b A a a b a a b = = ,b (2) 2 (3) (2) 3 2 2 2 , 2 2 ( ) ( ) ( ) ij ij i i i i j a a b b = − = − l a l b , , ,n i j , = 3 4 (3) (3) 记作 A x = ,其中 b (2) (2) 22 i2 i2 l a= a
若a3≠0,则此消去过程可依次进行下去
(3) 33 若 a 0 ,则此消去过程可依次进行下去
第n-1步消去过程后,得到等价三角方程组 Ax=b C1x1an2x2+a13x3+…+1nxn=() a2x2+a2x3+…+a2xn=b2 3) a33 ain b nn xn=b
( ) ( ) 1 n n n A x b − = 第 步消去过程后,得到等价三角方程组。 (1) (1) (1) (1) (1) 11 1 12 2 13 3 1 1 (2) (2) (2) (2) 22 2 23 3 2 2 (3) (3) (3) 33 3 3 3 n n n n n n a x a x a x a x b a x a x a x b a x a x b + + + + = + + + = + + = ( ) ( ) n n a x b nn n n =
系数矩阵与常数项 l1 12 13 0 an a (2) (2) (2) n 00 0b=|b n bn 计算出A"的过程为消元过
(1) (1) (1) (1) (1) 11 12 13 1 1 (2) (2) (2) (2) 22 23 2 2 ( ) (n) (3) (3) (3) 33 3 3 ( ) ( ) 0 0 0 0 0 0 n n n n n n nn n a a a a b a a a b A a a b a b = = ,b 系数矩阵与常数项: ( ) n ( ) n 计算出 A , 的过程为消元过程。 b