第三章 离散傅里叶变换
§3-4 离散傅里叶变换(DFT) DFS: x(n)←→x(k) 实际情况: x。(t)→x。(nT),Vn ↓ △ x(n)=x2(nT),n=0,1,·,N-1 那么, x(n),0≤n≤N-1 ↑- X(k),0≤k≤N-1
( ) ~ ( ) ~ DFS: x n X k 实际情况:x t x nT n a ( ) a ( ), x(n) x (nT ), n 0,1,, N 1 a △ 那么, x(n),0 n N 1 X (k),0 k N 1 ?
S 3-4 离散傅里叶变换(DFT)一、DFT的推导x(n)周期延拓令 x(n+IN)= x(n),0≤n≤ N-1, Vl=0,±1,±2,:x(n),0≤n≤N-1= x(n)R(n)x(n)主值序列x(n0,n<0,n≥N由DFS变换[3-17式]N-1N-1x(n)WX(k)=Zx(n)W"Vkel=n=0n=0显然X(k)= X(k+ N)仅有N个独立值
一、DFT的推导 ( ) ( ),0 1, 0,1,2, ~ 令 x n lN x n n N l ( ) ( ) ~ 0 , 0, ( ),0 1 ~ ( ) x n R n n n N x n n N x n N ~x (n)主值序列 由DFS变换[3-17式] 1 1 0 0 ( ) ( ) ( ) N N kn kn N N n n X k x n W x n W k I 显然 ( ) ~ ( ) ~X k X k N 仅有N个独立值 x(n)周期延拓
S 3-4 离散傅里叶变换(DFT)令X(k)= X(k)R(n)N-1则有X(k) = Zx(n)Whm0≤k≤N-1n=0即x(n),0≤n≤N-1>X(k).0≤k≤N-1Q问题: X(k),0≤k≤N-1>x(n),0≤n≤N-1: x(n)= x(n)R(n)KX(k)WR1nk=0N-.. X(k)→ x(n)X(k)W-kn>Nk=00≤k≤N-10≤n≤N-l0≤n≤N-1
令 ( ) ( ) 0 1 1 0 X k x n W k N N n kn N 则有 ( ) ( ) ~ X (k) X k R n N △ 即 x(n),0 n N 1 X (k),0 k N 1 问题: X (k),0 k N 1 x(n),0 n N 1 ? ( ) ( ) ~ x(n) x n R n N ( ) ( ) 1 ~ 1 0 X k W R n N N N k kn N 0 1 0 1 ( ) ( ) k N n N X k x n 1 0 1 ( ) 0 1 N kn N k X k W N n N
S 3-4 离散傅里叶变换(DFT)归纳起来:N-1X(k) =Zx(n)Wm0≤k≤N-l1n=0△= DFT[x(n)]N-1X(k)W-hnZ0≤n≤N-1r(n)三NNk=0Λ= IDFT [X(k)]
归纳起来: ( ) ( ) ( ) 0 1 1 0 DFT x n X k x n W k N N n kn N △ 1 0 1 ( ) ( ) 0 1 ( ) N kn N k x n X k W n N N IDFT X k △