日录QCD的手对称性 PGBM量 低月何年有效g托t:Wess-Zumino-Vitten项 0000000000 ⊙00●000000000 00o000000 0000 000000000000000000000000 -2Ckv -G入w π自能∑.(O)计算: m㎡)帝 a-(-2-示-6m欲2p-e i 0=(-2m刘4r-2E-w0 (0)=2AV(2μ2)-1(0 E2(0)=3M(0) ∑3(0)=(2μ2) 0)=(=0 doldstone ()=(060)=(a)-v=0 v→v+6v抵消蝌蚪图 V心-号6++6mP+6++6w→-ii+36n28=2A2G 王清( 柳论车他手征对称性及其破缺
✽➵ QCD✛➹✍é→✺ ❶✺σ✜✳ PGB➓þ ➎❶✺σ✜✳ ✩❯➹✍❦✟✳➻þ Wess-Zumino-Witten➅ π❣❯Σπ(0)❖➂: I(m 2 ) ≡ R d 4 k (2π) 4 1 k 2−m2 Σ4(0) = (−2ivλ) i −2µ2 1 2 (−6ivλ) Z d 4 k (2π) 4 i k 2 − 2µ2 = −3λI(2µ 2 ) Σ5(0) = (−2ivλ) i −2µ2 1 2 (−2ivλ) Z d 4 k (2π) 4 i k 2 = −λI(0) Σ1(0) = 2λ[I(2µ 2 ) − I(0)] Σ2(0) = 3λI(0) Σ3(0) = λI(2µ 2 ) Σπ(0) = X5 i=1 Σi(0) = 0 Goldstone ➼♥ hσ˜i = h0|σ˜|0i = hσi − v = 0 v → v + δv ✲➒➃❩ã V ∼ − µ 2 2 (˜σ+v+δv) 2 + λ 4 (˜σ+v+δv) 4 ⇒ −µ 2 δvσ˜ + 3λδvv 2 σ˜ = 2λv 2 δvσ˜ ✜➇ (➌✉➀➷) â❢♥Ø❀❑ ➹ ✍ é → ✺ ✾ Ù ➺ ✧
日录QCD的手对称性 线性。 PGBM量 低的有级氏量Wess-Zumino-Witten项 00oo000000 0000●00000000 00o000000 0000 000000000000000000000000 -2Ckv -6iXo -2 -61 6 a自能工.(0)计第:(㎡)三∫益a三发版Jm)三∫益()' 对数发服 o=(-20-4r00=(-2a益=4Q -1 0=-6n=3ue d'k i 0=-2益是=w0 王青( 。手征村称性及其破执
✽➵ QCD✛➹✍é→✺ ❶✺σ✜✳ PGB➓þ ➎❶✺σ✜✳ ✩❯➹✍❦✟✳➻þ Wess-Zumino-Witten➅ σ❣❯Σσ(0)❖➂: I(m 2 ) ≡ R d 4 k (2π) 4 1 k 2−m2 ✓❣✉Ñ J(m 2 ) ≡ R d 4 k (2π) 4 “ 1 k 2−m2 ”2 éê✉Ñ Σ 0 1(0)= (−2ivλ) 2 Z d 4 k (2π) 4 −1 k 4 = 4v 2 λ 2 J(0) Σ 0 2(0)= (−2ivλ) 2 Z d 4 k (2π) 4 −1 (k 2−2µ2) 2 = 4v 2 λ 2 J(2µ 2 ) Σ 0 3(0) = 1 2 (−6iλ) Z d 4 k (2π) 4 i k 2−2µ2 = 3λI(2µ 2 ) Σ 0 4(0) = 1 2 (−2iλ) Z d 4 k (2π) 4 i k 2 = λI(0) ✜➇ (➌✉➀➷) â❢♥Ø❀❑ ➹ ✍ é → ✺ ✾ Ù ➺ ✧
日录QCD的手对称性 线性。模型 PGB所量 线性g模型低晚手有效g托t:Wess-Zumino-Vitten项 0000000000 00000●0000000 00o000000 0000 0000000000000000000000000 2 -2iAv 6 a自能工,(0)计算:(m)三∫益士a三次发散Jm)三∫货())对题双散 o=-6m京-m焉2p=-uer 0=(-6m小-示-2m刘 dk i (2于2 =-3A10) 1(0)=4w2入2J(0) 3(0)=4w212J(2μ2) (0)=3M(2) (0)=W(0 2。(0)=∑(0)≠0=次发0 Higgsi质量二次发散在目前的体现→不自然性! 王背( 柳论地手征对称性及其破缺
✽➵ QCD✛➹✍é→✺ ❶✺σ✜✳ PGB➓þ ➎❶✺σ✜✳ ✩❯➹✍❦✟✳➻þ Wess-Zumino-Witten➅ σ❣❯Σσ(0)❖➂: I(m 2 ) ≡ R d 4 k (2π) 4 1 k 2−m2 ✓❣✉Ñ J(m 2 ) ≡ R d 4 k (2π) 4 “ 1 k 2−m2 ”2 éê✉Ñ Σ 0 5(0) = (−6ivλ) i −2µ2 1 2 (−6ivλ) Z d 4 k (2π) 4 i k 2 − 2µ2 = −9λI(2µ 2 ) Σ 0 6(0) = (−6ivλ) i −2µ2 1 2 (−2ivλ) Z d 4 k (2π) 4 i k 2 = −3λI(0) Σ 0 1(0) = 4v 2 λ 2 J(0) Σ0 2(0) = 4v 2 λ 2 J(2µ 2 ) Σ0 3(0) = 3λI(2µ 2 ) Σ0 4(0) = λI(0) Σσ(0) = X6 i=1 Σ 0 i(0) 6= 0 ✓❣✉Ñ! Higgs➓þ✓❣✉Ñ✸✽❝✛◆② ⇒ Ø❣✱✺➐ ✜➇ (➌✉➀➷) â❢♥Ø❀❑ ➹ ✍ é → ✺ ✾ Ù ➺ ✧
QCD的手对称性 线性。模型 PGB所 丰线。型低经手有效拉托量Wess-Zumino-Wi世en 00oo000000 000000●000000 000000000 0000 0000000000000000000000000 SU(2)L⑧SU(2)r线性σ模型 为什么不直接研究W=3?物单;同位对称性好 QcD自由今克项:C=Cs十CsB Cs=西eibr+西,igL CsB=-西,mR-五emL ULvL.aUL'=吃a=DLbaVLb =( ULVR.aUL'=中R.a URUR.aUR VR.a DR.baUR.b =() Ur此L.aUR=La URULCSUL UR=Cs 宏=叶 Qu三x形 O:三fx是 UL=eiayey UR=ee则 说+治三 治一治三瑞 Oki+Ou=Qi U= Q胜-Qu=Q5: PQiP-=Q PQsiP-=-Qsi PQuP-=QR PQRiP=QL =icO [QL.i,ORJ=0 [Qi,]=iejQk sU(2)v [Osi,Os]=iekO 师=)=(如船 中d=a(1)a+i()i西p=( 0+in3 in1+2 i沉1-T20-iT3 0=5(1+2) =-5(1-22) 1=-(p12+p21) 2=5(2-) ,手证对称性及其破块
✽➵ QCD✛➹✍é→✺ ❶✺σ✜✳ PGB➓þ ➎❶✺σ✜✳ ✩❯➹✍❦✟✳➻þ Wess-Zumino-Witten➅ SU(2)L ⊗ SU(2)R❶✺σ✜✳ ➃➓♦Ø❺✚ï➘Nf = 3 ? ④ü; Ó➔❫é→✺Ð QCD❣❞➜➂➅➭ L=LS+LSB LS =ψR i∂ψ/ R+ψL i∂ψ/ L LSB =−ψLmψR−ψRmψL ψL R = uL R dL R ! ULψL,aU −1 L = ψ 0 L,a = DL,baψL,b DL,ba = “ e iαj τj 2 ” ba ULψR,aU −1 L = ψR,a URψR,aU −1 R = ψ 0 R,a = DR,baψR,b DR,ba = “ e iβj τj 2 ” ba URψL,aU −1 R = ψL,a URULLSU −1 L U −1 R = LS j µ Ri ≡ ψγµ τi 2 1 + γ5 2 ψ j µ Li ≡ ψγµ τi 2 1 − γ5 2 ψ QLi ≡ Z d 3 x j0 Li QRi ≡ Z d 3 x j0 Ri UL = e iαjQLj UR = e iβjQRj j µ Ri + j µ Li ≡ j µ i j µ Ri − j µ Li ≡ j µ 5i QRi + QLi = Qi U = e iγjQj QRi − QLi = Q5i PQiP −1 = Qi PQ5iP −1 = −Q5i PQLiP −1 = QRi PQRiP −1 = QLi [QL R ,i , QL R ,j ] = iijkQL R ,k [QL,i, QR,j] = 0 [Qi, Qj] = iijkQk SU(2)V [Q5i, Q5j] = iijkQk φ∼ψψ= (( 1 2 ),( 1 2 ) ∗ )=„ φ11 φ12 φ21 φ22 « φa ˙b =σ(1)˙ba+ i(τj)˙baπj φ= „ σ+iπ3 iπ1+π2 iπ1−π2 σ−iπ3 « σ = 1 2 (φ11 + φ22) π3 = − i 2 (φ11 − φ22) π1 = − i 2 (φ12 + φ21) π2 = 1 2 (φ12 − φ21) ✜➇ (➌✉➀➷) â❢♥Ø❀❑ ➹ ✍ é → ✺ ✾ Ù ➺ ✧
日录QCD的手h对称性线性a模型 PGBM量 丰线性g模型低晚手有效设托Wess-Zumino-Vitten 00o0000000 0000000●00000 000000000 0000 00000000000000000000000000 SU(2)L⑧SU(2)r线性σ模型 s=a0+ik而= 0+iπ3im1+T2 i订1-2 0-im3 a=o+如)西=--如)n=-+a)m=o-a1) UL(a)oUL(a)-1=d()=[()o UR(B)UR(B)-1=(e )[(e)] 无穷水[eu,中adl=ah(5)m[0s,中dl=-(号)i2Ou r中中t=r0t中=a2+并,云是不变量 1Qu ]u.=-06+m [2m.]=- [2,=0g+m [Q,o]=0(a)≠0不破坏sU(2v[Q,=i球k元是U(2v伴随表示[Qs,o]=-i玩:[Qs,元l=io6时 P0P9a=PIOu.0sIP-=Oe,P0P→PP'=含PoP=PRx Cs=(aa+0,元·利-V(o2+示利+亚i+g四g+sΨV阳)=2+42 核子拉氏量 王青( 手征对称性及其破块
✽➵ QCD✛➹✍é→✺ ❶✺σ✜✳ PGB➓þ ➎❶✺σ✜✳ ✩❯➹✍❦✟✳➻þ Wess-Zumino-Witten➅ SU(2)L ⊗ SU(2)R❶✺σ✜✳ φ ∼ ( 1 2 , 1 2 ) = „ φ11 φ12 φ21 φ22 « φa ˙b = σ(1)˙ba + i(τj)˙baπj φ = „ σ + iπ3 iπ1 + π2 iπ1 − π2 σ − iπ3 « σ = 1 2 (φ11 + φ22) π3 = − i 2 (φ11 − φ22) π1 = − i 2 (φ12 + φ21) π2 = 1 2 (φ12 − φ21) UL(α)φa ˙bUL(α) −1 = φc ˙b (e iαj τj 2 )ca = [(e iαj τj 2 ) Tφ] a ˙b UR(β)φa ˙bUR(β) −1 = (e −iβj τj 2 )˙bc˙φac˙ = [φ(e −iβj τj 2 ) T ] a ˙b ➹→✂: [QLi, φa ˙b ] = φc ˙b ( τi 2 )ca [QRi, φa ˙b ] = −( τi 2 )˙bc˙φac˙ trφφ† = trφ †φ = σ 2 + ~π · ~π ➫Ø❈þ [QLi, σ] = i 2 πi [QLi, πj] = − i 2 σδij + i 2 ijkπk [QRi, σ] = − i 2 πi [QRi, πj] = i 2 σδij + i 2 ijkπk [Qi, σ] = 0 hσi 6= 0Ø➺⑨SU(2)V [Qi, πj] = iijkπk π➫SU(2)V❾➅▲➠ [Q5i, σ] = −iπi [Q5i, πj] = iσδij Pφc ˙bP −1 ( τi 2 )ca=P[QLi, φa ˙b ]P −1=[QRi, Pφa ˙bP −1 ] ⇒ Pφa ˙bP −1=φ † a ˙b ⇒ PσP −1=σ PπiP −1=−πi LS = 1 2 (∂µσ∂µ σ+∂µ~π · ∂ µ ~π) − V(σ 2+~π·~π) + Ψi∂/Ψ + gΨ[σ+i~π·~τ γ5]Ψ V(z) = κ 2 z+ λ 4 z 2 Ø❢✳➻þ ✜➇ (➌✉➀➷) â❢♥Ø❀❑ ➹ ✍ é → ✺ ✾ Ù ➺ ✧