配方可得y=x2-6x+21 =(x2-12x+42) =-(x2-12x+62-62+42) =(x2-12x+62)-62+42 [(x-6)2+6] 想一想:配方的 方法及步骤是什么? 2(x-6)+3. 2
1 2 6 21 2 配方可得 y x x = − + 1 2 2 2 ( 12 6 6 42) 2 = − + − + x x 1 2 ( 12 42) 2 = − + x x 1 2 2 2 [( 12 6 ) 6 42] 2 = − + − + x x 1 2 [( 6) 6] 2 = − + x 1 2 ( 6) 3. 2 = − + x 想一想:配方的 方法及步骤是什么?
y22-6x+21你知道是怎样配方的吗? (1)提”:提出二次项系数; 配 (2)配”:括号内配成完全平方; (3)“化”:化成顶点式 提示配方后 x-6)2+3 的表达式通常 2 称为配方式或 顶点式
配 方 6 21 2 1 2 y = x − x + 你知道是怎样配方的吗? (1)“提”:提出二次项系数; (2)“配”:括号内配成完全平方; (3)“化”:化成顶点式. 提示:配方后 的表达式通常 称为配方式或 顶点式. ( 6) 3 2 1 2 y = x − +
问题2你能说出≈1 (x-6)2+3的对称轴及顶点坐标吗? 答:对称轴是直线x6,顶点坐标是(6,3) 问题3二次函数y=(x-6)2+3可以看作是由y2h 怎样平移得到的? 答:平移方法1: 先向上平移3个单位,再向右平移6个单位得到的; 平移方法2: 先向右平移6个单位,再向上平移3个单位得到的
问题2 你能说出 的对称轴及顶点坐标吗? 1 2 ( 6) 3 2 y x = − + 答:对称轴是直线x=6,顶点坐标是(6,3). 问题3 二次函数 可以看作是由 怎样平移得到的? 1 2 ( 6) 3 2 y x = − + 1 2 2 y x = 答:平移方法1: 先向上平移3个单位,再向右平移6个单位得到的; 平移方法2: 先向右平移6个单位,再向上平移3个单位得到的
问题4如何用描点法画二次函数y=1x2-6x+2的图象? 解:先利用图形的对称性列表 3456789 y==(x-6)-3 7553.533.5575 ■ ■ 然后描点画图,得到图象10 如右图
问题4 如何用描点法画二次函数 2 的图象? 1 6 21 2 y x x = − + … … … x 3 4 5 6 7 8 9 … 解: 先利用图形的对称性列表 1 2 ( 6) 3 2 y x = − − − 7.5 5 3.5 3 3.5 5 7.5 5 10 x y 5 然后描点画图,得到图象 10 如右图. O
问题5结合二次函数y=x2-6x+21的图象,说出 其增减性. 当x<6时,yx的增大而减小; 当x>6时,yx的增大而增大 试一试 你能用上面的方法讨论二次函数y=2x2-8x+7的图象和 性质吗?
问题5 结合二次函数 的图象,说出 其增减性. 1 2 6 21 2 y x x = − + 5 10 x y 5 10 x=6 当x<6时,y随x的增大而减小; 当x>6时,y随x的增大而增大. 试一试 你能用上面的方法讨论二次函数y=2x 2 -8x+7的图象和 性质吗? O