基于数控机床设备故障领域的命名实体识别

为了给数控机床故障的精准诊断提供保障,延长数控机床使用周期,以数控机床历史维修记录为研究对象,对数控机床设备故障领域的命名实体识别进行了研究。在分析历史维修记录中的故障描述特点后,提出了一种基于双向长短期记忆网络(Bidirectional long short-term memory, BLSTM)与具有回路的条件随机场(Conditional random field with loop, L-CRF)相结合的命名实体识别方法。首先,对输入语句进行分词和标注,使用Word2vec中的Skip-gram模型对标注语料进行预训练,将其生成的字向量通过词嵌入层转化为字向量序列;然后,将字向量序列输入BLSTM学习长期依赖信息;最后将句子表达输入L-CRF获取全局最优序列。实验结果表明,该方法明显优于其他命名实体识别方法,为数控机床设备的智能检修与实时诊断任务打下了坚实的基础。
文件格式:PDF,文件大小:926.77KB,售价:2.88元
文档详细内容(约8页)
点击进入文档下载页(PDF格式)
共8页,试读已结束,阅读完整版请下载

您可能感兴趣的文档

点击购买下载(PDF)

下载及服务说明

  • 购买前请先查看本文档预览页,确认内容后再进行支付;
  • 如遇文件无法下载、无法访问或其它任何问题,可发送电子邮件反馈,核实后将进行文件补发或退款等其它相关操作;
  • 邮箱:

文档浏览记录