特征值 一、基本要求 1.理解矩阵的特征值、特征向量的概念并掌握其求法; 2.了解相似矩阵的概念、性质及矩阵对角化的充要条件,会化矩阵为相似对角形 二、内容提要 1.特征值与特征向量 设A为n阶方阵,a为n维非零列向量,为一个数,使得则称为A的一个特征值,a为A对应于的一个特征向量 2.特征向量的性质 (1)对应于不同特征值的特征向量是线性无关的 (2)同一特征值的特征向量a1,a2,…,am的任意非零线性组合
文件格式: DOC大小: 363KB页数: 25
向量组 一、基本要求 1.理解n维向量的概念; 2.理解向量组线性相关、线性无关的定义; 3.了解有关向量组线性相关、线性无关的重要结论 4.理解向量组的最大无关组与向量组的秩的概念 5.理解齐次线性方程组有非零解的充要条件及非齐次线性方程有解的充要条件; 6.理解齐次线性方程组的解的结构及通解等概念 7.理解非齐次线性方程组的解的结构及通解等概念; 8.掌握用行初等变换求线性方程组通解的方法
文件格式: DOC大小: 396.5KB页数: 28
线性方程组就是一次方程组。 先来分析中学数学怎样解二元一次方程组。看它的原理和方法是否可以推广到一般的多元一次 方程组
文件格式: DOC大小: 35.5KB页数: 5
二次型 一、基本要求 1.了解二次型及其矩阵表示; 2.会用配方法和初等变换化二次型为标准形; 3.熟练掌握用正交变换化实二次型为标准形; 4.知道惯性定理与二次型的秩; 5.了解实二次型的正定性及其判别法
文件格式: DOC大小: 212.5KB页数: 17
矩阵概念的一些背景 在线性方程组的讨论中,我们看到,线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解线性方程组的过程也表现为变换这些矩阵的过程除了线性方程组之外,还有大量的各种各样的问题也都提出矩阵的概念,并且这些问题的研究常常反映为有关矩阵的某些方面的研究,甚至于有些性质完全不同的
文件格式: DOC大小: 891KB页数: 29
线性函数 定义1设V是数域P上的一个线性空间,f是V到P的一个映射,如果f 满足 1)f(a+)=f(a)+f() 2) f(ka)=(a), 式中a,B是V中任意元素,k是P中任意数,则称f为V上的一个线性函数 从定义可推出线性函数的以下简单性质: 1.设f是v上的线性函数,则f(0)=0,f(-a)=-f(a) 2.如果B是a1,a2…,a的线性组合:
文件格式: DOC大小: 854.5KB页数: 19
一、集合 集合是数学中最基本的概念之一,所谓集合就是指作为整体看的一堆东西 组成集合的东西称为这个集合的元素用 a∈M 表示a是集合M的元素,读为:a属于M用 a∈M 表示a不是集合M的元素,读为:a不属于M 所谓给出一个集合就是规定这个集合是由哪些元素组成的因此给出一个集 合的方式不外两种,一种是列举法:列举出它全部的元素,一种是描述法:给 出这个集合的元素所具有的特征性质
文件格式: DOC大小: 924KB页数: 25
设P是数域,是一个文字,作多项式环P,一个矩阵如果它的元素是 的多项式,即P[]的元素,就称为-矩阵在这一章讨论λ矩阵的一些性 质,并用这些性质来证明上一章第八节中关于若当标准形的主要定理 因为数域P中的数也是P]的元素,所以在λ矩阵中也包括以数为元素 的矩阵.为了与-矩阵相区别,把以数域P中的数为元素的矩阵称为数字矩 阵.以下用A(),B()…等表示-矩阵 我们知道,P]中的元素可以作加、减、乘三种运算
文件格式: DOC大小: 544.5KB页数: 19
第五章二次型 5-1二次型及其矩阵表示 一、二次型及其矩阵表示 设P是一个数域,一个系数在数域P中的x1xn的二次齐次多项式称为数域P上的一个n元二次型,简称二次型
文件格式: DOC大小: 526.5KB页数: 18
第二章行列式 2-1引言 解方程是代数中的一个基本的问题,特别是在中学所学代数中,解方程占有重要地位这一章和下一章主要讨论一般的多元一次方程组,即线性方程组。 线性方程组的理论在数学中是基本的也是重要的内容
文件格式: DOC大小: 625KB页数: 28
©2025 mall.hezhiquan.com 和泉文库
帮助反馈侵权