8-2同余式 8.2.1有理整数环中的同余的定义 定义8.5设m是一个正整数,若a,b∈Z,且ba∈(m),亦即m(b-a),则 称b与a模m同余,记作b=a(modm)。不难得到,b与a模m同余就是它们用m做带 余除法所得的余数相同。整数模m同余为一等价关系,验证如下:
文件格式: DOC大小: 175KB页数: 2
第八章有理整数环 8-1有理整数环的基本概念 8.1.1有理整数环的基本概念 全体整数所组成的集合中有两种运算:加法和乘法,而且它们满足下面运算法则: (1)加法满足结合律; (2)加法满足加换律 (3)有一个数0,是对任意整数a,0+a=a; (4)对任意整数a,存在整数b,使b+a=0 (5)乘法满足结合律 (6)有一个数1,是对任意整数a,la=a
文件格式: DOC大小: 419.5KB页数: 5
定义设A是数域K上一个n阶方阵,g(x)是K上一个m次多项式.如果g(A)=0,则g(x) 称为方阵A的一个化零多项式 Hamilton-Cayley-定理设A是数域K上的n阶方阵,f是A的特征多项式,则f(A)=0. 证明A在C内相 Jordan似于形矩阵J,即有c上可逆阵T使TAT=J显然对任意正 整数k
文件格式: DOC大小: 97.5KB页数: 3
定理设A是数域K上的n阶方阵.如果A的特征值全属于K,则A在K上相似于 Jordan形矩阵,并且在不计 Jordan块顺序的意义下 Jordan形是唯一的. 证明:此定理就是上一定理用矩阵的语言叙述出来 Jordan标准形的计算方法:
文件格式: DOC大小: 51.5KB页数: 1
7-1幂零线性变换的 Jordan标准型 A是数域K上n维线性空间V上的线性变换,如果存在正整数m,使A=0,则称A是一个 幂零线性变换. 对数域K上n阶方阵A,如果存在正整数m,使Am=0,则称A为幂零矩阵 命题幂零线性变换的特征值等于0 证明设是V上幂零线性变换A的特征值,则存在V中非零向量a,使得 Aa= 假设A=0
文件格式: DOC大小: 82KB页数: 2
第六章6-4四维时空空间与辛空间 在狭义相对论中,用三个空间坐标和一个时间坐标来刻画一个物体的运动,称为四维时 空空间 在R上规定一个特殊的度量f(a,B)=x1y1+x2y2+x3y3-x4y4(其中a=( x,x2,x3,x4)',B=(y1,y2,y3,y4)),称为四维时空空间的度量
文件格式: DOC大小: 242.5KB页数: 5
设A是n维酉空间V内的线性变换,如果V内的线性变换A满足a,BV,有 (Aa, B)=(a, B) 则称A是A的共轭变换.A为A的共轭变换当且仅当它们在标准正交基下的矩阵互为共轭 转置. 共轭变换的五条性质:
文件格式: DOC大小: 285KB页数: 3
设V是复线性空间.V×V上的一个函数,如果满足 (i)(·,·)对第一个变量是线性的 (i)(a,B)=(B (ii1)ya∈V,(a,a)≥0,且(a,a)=0分a=0 则称(a,B)为向量a,B的内积,具有内积的复线性空间称为酉空间(欧氏空间在复线性 空间上的推广)
文件格式: DOC大小: 194KB页数: 3
设A是n维欧氏空间V内的一个线性变换,如果对a,∈V,都有 (Aa,)=(a, AB) 则称A是V内的对称变换 命题n维欧氏空间V上的线性变换A是对称变换当且仅当它在标准正交基 ,2n下的矩阵A是实对称矩阵
文件格式: DOC大小: 127.5KB页数: 2
第六章6-2欧氏空间中特殊的线性变换(续) 命题正交矩阵的特征多项式的根的绝对值等于1证明设入∈C是正交矩阵A的特征多项式的根,则≠0.齐次线性方程组(e-a)X=0在C内有非零解向量
文件格式: DOC大小: 75KB页数: 1