§6.1 度量空间的进一步例子 §6.2(1) 度量空间中的极限 §6.2(2) 度量空间中的稠密集 可分空间 §6.3 连续映照
文件格式: DOC大小: 1.57MB页数: 18
《泛函分析》课程教学资源:参考资料
文件格式: DOC大小: 38.5KB页数: 2
广州大学:《数学分析》课程教学资源(讲义)第四章 函数的连续性 4.1 连续性的概念
文件格式: DOC大小: 261.5KB页数: 25
从前面两节知道基本初等函数中:常函数,三角函数,反三角函数,以及有 理指数幂函数,都是定义 域上的连续函数.本节将讨论指数函数、对数函数与实指数幂函数在其定义域内 的连续性,以及初等函数在 其定义域内的连续性
文件格式: DOC大小: 145.5KB页数: 6
1连续函数的局部性质 2区间上的连续函数的基本性质 3反函数的连续性
文件格式: DOC大小: 354KB页数: 51
教学内容:平面图形面积的计算 教学目的:理解定积分的意义;学会、掌握微元法处理问题的基本思想 熟记平面图形面积的计算公式。 直角坐标系下平面图形的面积 由定积分的几何意义,连续曲线y=f(x)0与直线 =a,x=b(b>a),x轴所围成的曲边梯形的 面积为A=[f(x)x 若y=f(x)在[a,上不都是非
文件格式: DOC大小: 118KB页数: 7
从物理学知道,如果物体在做直线运动的过程中受到常力F作用,并且力F的 方向与物体运动的方向 致,那么,当物体移动了距离s时,力F对物体所作的功是W=F·s如果 物体在运动过程中所受到的力 是变化的,那么就遇到变力对物体作功的问题,下面通过例1说明如何计算变力 所作的功
文件格式: DOC大小: 165.5KB页数: 8
3.平面曲线的弧长与曲率 1直角坐标情形 y=f(x)(a≤x≤b 设曲线弧由直角坐标方程 给出,其中fx)在 四,上具有一阶连续导数。 现在用元素法来计算这曲线弧的长度.取横坐标x为积分变量,它的变化区间 为可.曲线y=f(x)上 对应于p,上任一小区间[,x+d]的一段弧的长度△s可以用该曲现在点
文件格式: DOC大小: 50.5KB页数: 2
上节我们学习了平面图形面积的计算,还利用分割、求和的分析方法,导出 了极坐标下平面图形的 面积公式 8=(0 现在我们看下面一个空间立体,假设我们知道它在x处截面面积为S(x),可 否利用类似于上节极坐标 下推导面积公式的思想求出它的体积?
文件格式: DOC大小: 63KB页数: 5
1反常积分的概念(4学时) 反常积分的引入,两类反常积分的定义反常积分的计算 2无穷积分的性质与收敛判别(4学时) 无穷积分的性质,非负函数反常积分的比较判别法, Cauchy判别法 反常积分的 Dirichlet判别法 与Abel判别法
文件格式: DOC大小: 68.5KB页数: 5
©2025 mall.hezhiquan.com 和泉文库
帮助反馈侵权