《小波分析》系列讲座3

呵呵现在任给一函数f(x),我们怎么知道小波级数可以无限逼近这个函数呢 我们想象任给beta>0,可以将f(x)曲线按每beta长度分成很多小段,对应很多点 若我们可以用一函数g(x)来拟合这些点,那么g(x)和(x)在任意x上的误差将小于beta 若点数量为2^n个那么我们就可以分别用^(n-1)个L波和2^(n-1)个H波拟合 然后可将L波再分解,最后得到一棵树(分解的级数由你决定)
文件格式:DOC,文件大小:20.5KB,售价:0.6元
文档详细内容(约2页)
点击进入文档下载页(DOC格式)
已到末页,全文结束

您可能感兴趣的文档

点击购买下载(DOC)

下载及服务说明

  • 购买前请先查看本文档预览页,确认内容后再进行支付;
  • 如遇文件无法下载、无法访问或其它任何问题,可发送电子邮件反馈,核实后将进行文件补发或退款等其它相关操作;
  • 邮箱:

文档浏览记录