矩阵的乘法 重温蚁铺 http:/aofuyousi.com y1=1x1+a12x2+a13x3 x=bttb 12 a、X,+C、X+a、、x 22°2 与{x2=b1+b2 A b1+b2 2 23 B y1=(a1b1+a12b21+a13b2n)t1+ b b (a1b2+a12b2+a13b2) y2=(a2b1+a2b21+a2b3)1+ b. b 21 22 (a2b2+a2b2+a2b2) 6. b
矩阵的乘法 1 1 1 1 1 2 2 1 3 3 y = a x + a x + a x 2 2 1 1 2 2 2 2 3 3 y = a x + a x + a x = + = + = + 3 3 1 1 3 2 2 2 2 1 1 2 2 2 1 1 1 1 1 2 2 x b t b t x b t b t x b t b t 与 1 1 1 2 1 2 2 2 1 3 3 2 2 1 1 1 1 1 1 2 2 1 1 3 3 1 1 ( ) ( ) a b a b a b t y a b a b a b t + + = + + + 2 1 1 2 2 2 2 2 2 3 3 2 2 2 2 1 1 1 2 2 2 1 2 3 3 1 1 ( ) ( ) a b a b a b t y a b a b a b t + + = + + + = 2 1 2 2 2 3 1 1 1 2 1 3 a a a a a a A = 3 1 3 2 2 1 2 2 1 1 1 2 b b b b b b B
重温蚁铺 12 11 13 21 22 =C=(C) 23 32 ab1+a12b1+a2b1a1b12+a12b2+a1b2 ab. +ab. +ab a b. ta 2112 22-22 23-32 引入求和记号∑ 1+x2+…+xn ∑ 双重求和号 连写 可以交换顺序 ∑∑a=∑∑
+ + + + + + + + 2 1 1 1 2 2 2 1 2 3 3 1 2 1 1 2 2 2 2 2 2 3 3 2 1 1 1 1 1 2 2 1 1 3 3 1 1 1 1 2 1 2 2 2 1 3 3 2 a b a b a b a b a b a b a b a b a b a b a b a b 2 1 2 2 2 3 1 1 1 2 1 3 a a a a a a 31 32 21 22 11 12 b b b b b b = ( ) C c = = ij 引入求和记号 1 2 1 n i n i x x x x = = + + + 1 n j j x = = 1 1 m n ij i j a = = 1 1 n m ij j i a = = = 双重求和号 连写 可以交换顺序
重温蚁铺 贝 Cn=∑ab(i,j=1,2) k=1 般地,有 A=(a,mxs b=(6 C= AB 4//mXI S×n- b2 i a 2 Cn=a1b,+a2b+…+ab,=∑abn k=1
一般地,有 ij c B = bij sn ( ) ( ) ai1 ai2 ais sj j j b b b 2 1 A = aij ms ( ) ij ai b j ai b j aisbs j c = 1 1 + 2 2 ++ C = AB 则 ij m n c = ( ) 3 1 ij ik kj k c a b = = ( , 1, 2) i j = 1 s ik kj k a b = =
Cn=An,B,A与B满足什么 件时能够相乘? 如果m=1,n=1时 AB=(a1,a2;…a,)|=∑a 个数 般不写为矩阵 BA 1525 S×S S阶方阵
C mn = A ms B sn 如果 m=1,n=1时 AB = 1 2 ( , , , ) s a a a 1 2 s b b b 1 s i i i a b = = BA = 1 2 s b b b 1 2 ( , , , ) s a a a ( )ij s s c = i j = b a 一个数, 一般不写为矩阵 S阶方阵