1.3宏观物质的磁性 原子、离子的磁矩(顺、抗磁) 孤 安 体磁性 晶体结构和晶场类型(自旋、轨道贡献》 配位 相邻原子、电子间的相互作用(磁有序) 天联 研究凝聚态物质各种磁性表现的起因是磁性物理的主要 任务,其中强磁性物质在技术领域有着突出作用,所以影响 强磁性物质磁性的机理是我们课程最为关注的
研究凝聚态物质各种磁性表现的起因是磁性物理的主要 任务,其中强磁性物质在技术领域有着突出作用,所以影响 强磁性物质磁性的机理是我们课程最为关注的。 1.3 宏观物质的磁性 固 体 磁 性 原子、离子的磁矩(顺、抗磁) 孤 立 晶体结构和晶场类型(自旋、轨道贡献) 配位 相邻原子、电子间的相互作用(磁有序) 关联
一,物质磁性的分类 为了研究物质磁性的起因,一般按其在磁场中的表现 进行分类,主要依据磁化率的正负、大小及其温度关系, 分类是否科学取决于是否反映了内在磁性机理上的不同。 随着研究的深入,分类也在不断完善和细化,到上个世纪 70年代为止,在晶状固体里,共发现了五种主要类型的 磁结构物质,它们的形成机理和宏观特征各不相同,对它 们的成功解释形成了今天的磁性物理学核心内容。 上世纪70年代以后,随着非晶材料和纳米材料的兴 起,又发现了一些新的磁性类型,对它们的研究尚在深化 之中
为了研究物质磁性的起因,一般按其在磁场中的表现 进行分类, 主要依据磁化率的正负、大小及其温度关系, 分类是否科学取决于是否反映了内在磁性机理上的不同。 随着研究的深入,分类也在不断完善和细化,到上个世纪 70 年代为止,在晶状固体里,共发现了五种主要类型的 磁结构物质,它们的形成机理和宏观特征各不相同,对它 们的成功解释形成了今天的磁性物理学核心内容。 上世纪 70 年代以后,随着非晶材料和纳米材料的兴 起,又发现了一些新的磁性类型,对它们的研究尚在深化 之中。 一. 物质磁性的分类
1.抗磁性(Diamagnetism) 这是19世纪后半叶就己经发现并研究的一类弱磁性。它的 最基本特征是磁化率为负值且绝对值很小,X<0,|X<<1 其磁化强度和磁场强度反向,在不均匀的磁场中被推向磁 场减小的方向,所以又称逆磁性。典型抗磁性物质的磁化率是 常数,不随温度、磁场而变化。有少数的反常。 深入研究发现,典型抗磁性是轨道电子在外磁场中受到电 磁作用而产生的,因而所有物质都具有一定的抗磁性,但只是 在构成原子(离子)或分子的磁距为零,不存在其它磁性的物 质中,才会在外磁场中显示出这种抗磁性。在外场中显示抗磁 性的物质称作抗磁性物质。除了轨道电子的抗磁性外,传导电 子也具有一定的抗磁性,并造成反常
这是19世纪后半叶就已经发现并研究的一类弱磁性。它的 最基本特征是磁化率为负值且绝对值很小,<0, <<1 其磁化强度和磁场强度反向,在不均匀的磁场中被推向磁 场减小的方向,所以又称逆磁性。典型抗磁性物质的磁化率是 常数,不随温度、磁场而变化。有少数的反常。 深入研究发现,典型抗磁性是轨道电子在外磁场中受到电 磁作用而产生的,因而所有物质都具有一定的抗磁性,但只是 在构成原子(离子)或分子的磁距为零,不存在其它磁性的物 质中, 才会在外磁场中显示出这种抗磁性。在外场中显示抗磁 性的物质称作抗磁性物质。除了轨道电子的抗磁性外,传导电 子也具有一定的抗磁性,并造成反常。 1. 抗磁性(Diamagnetism)
自然界中很多物质都是抗磁性物质:周期表中三分之一的 元素、绝大多数的有机材料和生物材料都是抗磁性物质。 包括: 稀有气体:He,Ne,Ar,Kr,Xe 多数非金属和少数金属:Si,Ge,S,P,Cu,Ag,Au 不含过渡族元素的离子晶体:NaCl,KBr 不含过渡族元素的共价键化合物:H2,CO2,CH4等 几乎所有的有机化合物和生物组织: 水; 反常抗磁性物质:Bi,Ga,Zn,Pb,磁化率与磁场、温度有关。 广义地说,超导体也是一种抗磁性物质,X=-1,它的机理 完全不同,不在我们讨论之内
自然界中很多物质都是抗磁性物质:周期表中三分之一的 元素、绝大多数的有机材料和生物材料都是抗磁性物质。 包括: 稀有气体:He,Ne,Ar,Kr,Xe 多数非金属和少数金属:Si,Ge,S,P,Cu,Ag,Au 不含过渡族元素的离子晶体:NaCl,KBr 不含过渡族元素的共价键化合物:H2,CO2,CH4 等 几乎所有的有机化合物和生物组织: 水; 反常抗磁性物质:Bi,Ga,Zn,Pb,磁化率与磁场、温度有关。 广义地说,超导体也是一种抗磁性物质,=-1 ,它的机理 完全不同,不在我们讨论之内
见姜书p25CGS单位制克分子磁化率 体积磁化率 表13惰性气体原子的x抗值(10 密度 原子量 ×10-6 元素 Z 电子组态 X抗(实验) X He 2 1s2 -1.9 -2.02 0.2054 0.097 Ne 10 2p6 -7.2 -6.96 1.5120.18 0.43 Ar 18 3p6. -19.4 -19.23 1.77 39.95 0.85 -28.02 Kr 36 4p6 -28.0 -29.2 3.09 83.80 1.03 -42.02 Xe 54 5p6 -43 -44.1 3.78131.3 1.24 注:此表引自S.V.Vonsovskii,Magnetism(1974)。 Kittel书数据(2002) 它们的电子壳层都是满壳层,所以原子磁矩为零。 在CGS单位制下,抗磁磁化率的典型值是10-6cm3.mol1。 统一换成体积磁化率的数值,量级是10-6。 换成SI单位制下应乘以4π,量级在105
-1.9 -7.2 -19.4 -28.0 -43 见姜书p25 CGS单位制克分子磁化率 它们的电子壳层都是满壳层,所以原子磁矩为零。 在CGS单位制下,抗磁磁化率的典型值是10 -6 cm3 ·mol -1 。 统一换成体积磁化率的数值,量级是10-6 。 换成 SI 单位制下应乘以4π,量级在10 -5 。 Kittel 书数据(2002) ρ n 0.205 4 0.097 1.51 20.18 0.43 1.77 39.95 0.85 3.09 83.80 1.03 3.78 131.3 1.24 密度 原子量 体积磁化率 ×10-6