案例1:厦门市贷款总额与GDP的关系分析(1990~2003)800LOAN700GDPobsLOAN600199063.7000057.10000500199178.0000072.00000400199297.70000300112.70002001993151.8000132.30001001994209.6000187.0000GDP01995260.8000250.600010030040002005006007008001996306.8000306.40008001997352.3000370.3000LOAN7001998397.3000418.10006001999435.3000458.30005002000488.3000501.20004002001552.0000556.00003002002646.0000200648.00001002003898.0000760.0000GDP0.0100200300400500600700800
案例1:厦门市贷款总额与GDP的关系分析 (1990~2003)
案例1:厦门市贷款总额与GDP的关系分析(1990~2003)从散点图看,用多项式方程拟合比较合理。Loan, = β +β,GDP, + β, GDP,2 + βGDP3 + ut= -24.5932 +1.6354GDP, - 0.0026GDP,2 + 0.0000027GDP,3(7.9)(-2.0)(11.3)(-6.3)R2=0.9986, DW-2.6800800LOANLOAN700700600600500500400400300300200200100100GDPGDP0001002003004005006007001002006008000300400500700800
从散点图看,用多项式方程拟合比较合理。 Loant = 0 +1 GDPt + 2 GDPt 2 + 3 GDPt 3 + ut = -24.5932 +1.6354 GDPt - 0.0026GDPt 2 + 0.0000027 GDPt 3 (-2.0) (11.3) (-6.3) (7.9) R2=0.9986, DW=2.6 案例1:厦门市贷款总额与GDP的关系分析 (1990~2003)
(1)多项式方程模型(2)12000120001000010000800080006000600074000400020002000T0-751001251501752002550751001251501752002550(b,<0, b2 <0(b,>0, b,>0)另一种多项式方程的表达形式是(第4版教材第93页)Yt= bo + bix, + b,x? + u注意:拟合时不要丢了b1x项令x=X,Xt2=x,2,上式线性化为,yt= bo + biXn + b2x2 + ut如经济学中的边际成本曲线、平均成本曲线与左图相似
(第4版教材第93页) (1)多项式方程模型(2) ( b1>0, b2>0) (b1<0, b2 <0 另一种多项式方程的表达形式是 yt = b0 + b1 xt + b2 xt 2 + ut 令xt 1 = xt,x t 2 = xt 2,上式线性化为, yt = b0 + b1 xt1 + b2 xt2 + ut 如经济学中的边际成本曲线、平均成本曲线与左图相似。 注意:拟合时不要丢了b1 xt项
(1)多项式方程模型(2)例4.1:平均成本与产品产量的关系(课本93页,file:li-4-1)DependentVariable:YiXMethod:Least SquaresDate:10/02/07Time:10:01Sample:115Included observations:15140yixVariableStd.ErrorProb.Coefficientt-Statistic130C0.0000105.15522.47587642.47191120-x-0.0617510.007121-8.6720840.0000X"25.55E-054.33E-0612.823780.0000110R-squared0.972820Mean dependent var101.63151000.96829015.60920AdjustedR-squaredS.D. dependent varS.E.of regression2.7795925.059342Akaike info criterion9092.713585.200952Sum squared residSchwarz criterionX-34.94506F-statistic214.7481Log likelihood808000400120016001.8621980.000000Durbin-Watson statProb(F-statistic)= 105.1- 0.06 x, + 0.00006 x2(第4版教材第93页)(12.8)R2 = 0.97, N= 15(42.5) (-8.7)
(1)多项式方程模型(2) 例4.1:平均成本与产品产量的关系(课本93页, file:li-4-1 ) = 105.1- 0.06 xt + 0.00006 xt 2 (42.5) (-8.7) (12.8) R2 = 0.97, N = 15 (第4版教材第93页)
(2)双曲线函数模型(第4版教材第93页).8y,=a+b/x,+u,30.620-.210-深1/y,=a+b/x,+u0025507510012515017520022525015255102030355040:451/y,= a + b/x, + u, 或 y,= 1/ (a + b/x, + u)令y*=1/y,x*=1/x,得y*=a+bx*+ut已变换为线性回归模型。双曲线函数还有另一种表达方式,Y, = a + b/x, + ut令x*=1/x,得y,=a+bx*+ut上式已变换成线性回归模型
(2) 双曲线函数模型 (第4版教材第93页) 1/yt = a + b/xt + ut 或 yt = 1/ (a + b/xt + ut) 令yt * = 1/yt, xt * = 1/xt,得 yt * = a + b xt * + ut 已变换为线性回归模型。双曲线函数还有另一种表达方式, yt = a + b/xt + ut 令xt * = 1/xt,得 yt = a + b xt * + ut 上式已变换成线性回归模型。 yt = a + b/xt + ut 1/yt = a + b/xt + ut