Inverse 例14.1 函数f(t)=1的 Laplace换式为 1 e dt e P 这里的限制条件Rep>0是为了保证积分收敛, 或者说,是 Laplace变换存在的条件 尜
Laplace Transform Inverse Laplace Transform Definition of Laplace Transform Properties of Laplace Transform ~14.1 ¼êf(t) = 1Laplaceª 1 ; Z ∞ 0 e −ptdt = − 1 p e −pt ∞ 0 = 1 p Re p > 0 ùp^Re p > 0´ yÈ©Âñ§ ½ö`§´LaplaceC3^ C. S. Wu 1où LaplaceC
Inverse 例14.2 函数f(t)=e的 Laplace换式为 e Rep> re a p- a 这里的限制条件Rep>Rea同样是为了保证积分 收敛,即 Laplace变换存在
Laplace Transform Inverse Laplace Transform Definition of Laplace Transform Properties of Laplace Transform ~14.2 ¼êf(t) = eαtLaplaceª e αt ; Z ∞ 0 e −pt · e αt dt = − 1 p e −(p−α)t ∞ 0 = 1 p − α Re p > Re α ùp^Re p > Re αÓ´ yÈ© Âñ§=LaplaceC3 C. S. Wu 1où LaplaceC
Inverse 例14.2 函数f(t)=e的 Laplace换式为 e Rep> re a p- a 这里的限制条件Rep>Rea同样是为了保证积分 收敛,即 Laplace变换存在
Laplace Transform Inverse Laplace Transform Definition of Laplace Transform Properties of Laplace Transform ~14.2 ¼êf(t) = eαtLaplaceª e αt ; Z ∞ 0 e −pt · e αt dt = − 1 p e −(p−α)t ∞ 0 = 1 p − α Re p > Re α ùp^Re p > Re αÓ´ yÈ© Âñ§=LaplaceC3 C. S. Wu 1où LaplaceC
Inverse 讨论 。从例14.1和例14.2可以看出,由于 Laplace变换 的核是e,所以对于相当广泛的函数f() 其拉氏换式都存在
Laplace Transform Inverse Laplace Transform Definition of Laplace Transform Properties of Laplace Transform ?Ø l~14.1Ú~14.2±wѧduLaplaceC Ø´e −pt §¤±éu2¼êf(t)§ Ù.¼ªÑ3 $t → ∞, f(t) → ∞ §f(t).¼ ªU3 LaplaceC3^ Ò´È© Z ∞ 0 e −ptf(t) dtÂñ^ C. S. Wu 1où LaplaceC
Inverse 讨论 °从例141和例14.2可以看出,由于 Laplace变换 的核是e,所以对于相当广泛的函数f(t), 其拉氏换式都存在 甚至当 f(1)∞时,f(1)的拉氏换 式也可能存在
Laplace Transform Inverse Laplace Transform Definition of Laplace Transform Properties of Laplace Transform ?Ø l~14.1Ú~14.2±wѧduLaplaceC Ø´e −pt §¤±éu2¼êf(t)§ Ù.¼ªÑ3 $t → ∞, f(t) → ∞ §f(t).¼ ªU3 LaplaceC3^ Ò´È© Z ∞ 0 e −ptf(t) dtÂñ^ C. S. Wu 1où LaplaceC