概華论与款程统外 关于定理一的说明: 当n很大时,随机变量X1,X2,Xn的算术平 均}∑x接近于数学期望 nk=1 E(X)=E(X2)=.=E(Xk)=4, (这个接近是概率意义下的接近) 即在定理条件下,n个随机变量的算术平均,当n 无限增加时,几乎变成一个常数
关于定理一的说明: ( ) ( ) ( ) , 1 , , , , 1 2 1 1 2 = = = = = k n k k n E X E X E X X n n X X X 均 接近于数学期望 当 很大时 随机变量 的算术平 (这个接近是概率意义下的接近) 即在定理条件下, n个随机变量的算术平均, 当n 无限增加时, 几乎变成一个常数
概车纶与款理统外 定理一的另一种叙述: 设随机变量X1,X 且具有相同的数学期 设Y,上2,.,Yn是一个随 机变量序列是一个常 D(X)=o2(k=1,2, 数,若对于任意正数8 依概率收敛于,肌 有lim P(Y-aK}=1, 则称序列Y1,Y2,.,Y 依概率收敛于,记为
, . 1 ( ) ( 1, 2, ), ( ) , , , , , , 1 2 1 2 ⎯→ = = = = = P n k k k k n X X n D X k X E X X X X 依概率收敛于 即 则序列 且具有相同的数学期望和方差: 设随机变量 相互独立 Y a a Y Y Y P Y a a Y Y Y P n n n n n ⎯→ − = → 依概率收敛于 记 为 则称序列 有 数 若对于任意正数 机变量序列 是一个常 设 是一个随 , , , , lim {| | } 1, , , , , , 1 2 1 2 定理一的另一种叙述: