芩3 2msG+ms +i)h A=hy(S-m)S+m。+1) s|s,m,=√(S-m,)(S+m,+1)s,m,+1
2 s 2 2 s 2 m m 4 3 = h − h − h 2 s s m 1) 21 m )( 21 = ( − + + h A (S m )(S m 1) = − ++ s s h s ss s ˆ S S,m (S m )(S m 1) S,m 1 + = h − ++ +
同理可得 s|s,m)=h(S+m)(S-m、+1)s,m,-1) 九 m s+m,+1)S,m,+ +√S+m)S-m,+1)S,m,-1) 11\;11
同理可得 s ss s ˆ S S,m (S m )(S m 1) S,m 1 − = h + −+ − xs s s s ss s ˆ S S, m ( (S m )(S m 1) S, m 1 2 (S m )(S m 1) S, m 1 ) = − ++ + + + −+ − h 2 1 2 1 2 2 1 2 1 Sˆ x h − =
11 22/222 得系数矩阵为 转置得 方(0 2(10
得系数矩阵为 转置得 2 1 2 1 2 2 1 2 1 Sˆ x = − h ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ 1 0 0 1 2 h ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = 1 0 0 1 2 S ) ˆ ( x h
i yS,m,)=(√s+m)(S-m、+1s,m、- S-m)(S+m+1)S,m+1 11\i11 22/222 i11 222
2 1 2 1 2 i 2 1 2 1 Sˆ y = − h (S m )(S m 1) S, m 1 ( (S m )(S m 1) S, m 1 2i Sˆ S, m s s s y s s s s − − + + + = + − + − h 2 1 2 1 2 i 2 1 2 1 Sˆ y h − = −
01 系数矩阵为 五2 转置得 h(0-i (S) 2(i0 对于Sn在,φ方向有 S= sin 0 cos s, + sin Asin ds, +cos AS
系数矩阵为 转置得 对于 在 方向有 ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − 1 0 0 1 2 i h ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − = i 0 0 i 2 S ) ˆ ( y h S n ˆ θ , φ n x yz ˆ ˆ ˆˆ S sin cos S sin sin S cos S = θ φ+ θ φ+ θ