第二章郭析承数:33.32.线性代数·复变函数·摄事统计习题全解(中册)CI即T)-7()r3解析10.证明:如果函数/()=+十在区域D内解析·并满足下列条件之f()=C于是由(2),知一,那么()是常数。证法2由()=#十i得(1)(z)组取实值:(2)7)在D内解析:1F)=Vu+=C*0(3)1/()在D内是一个常数:上式两边分别对求偏导(4)argf(=)在D内是一个常数:2m元+20元(5)+bu=,其中ab与为不全为零的实常数arar-02+#证明(1)(=)取实值,岁+如f(z)=w(r,y)+(ry)=实值h-00二元-0财ry)=0且2/u+0arayF(e)解析,则F(t)满足C-R方程:+m0a一二一即ara1岁+岁-0-0ar于是=00u—常数(z)=C题设F(z)在D内解析,期满足C-R方程:3y(2)(e)在D内解析出一岁岁一岁az由(e)+i在D内解析,有aus+宗±-3=0(1)(1)uararayayax即2--。T(e)w一iv在D内解析得(2)a-aaa(2)aaar仅将看成线性方程组中的.其余看成u等系数ara#元-#一岁-0由(1)(2).得6yaay+)--C*0系数矩阵所以wmCmCa-ar所以f()C,+iC=C由克拉默法则有=0aar(3)(/()在D内为一常数,宗一0再由C-R方程有0u=CV=C=)=C+iC,证法1若1/()/=C=0.则()=0.()是常数,ayay(4)arg/(e)在D内为一常数若(()C¥0期()±0证明设arg/()=9=C,则手是f()()-CI
11.34.第二章解析西数.35.线性代数·复变函数·账率统计习题全解(中册)=tan5-anC-C=u.C解(1)e正确因为4e=e(cosy+iny)=e(cosy-isiny)上式分别对及求偏导,再用C-R方程e[cos(y)+ isin(y)]-eely=er-et4面-Caaa--Ca1(2)c082=cO82正确,因为ax3arcoszcos(r+iy)cosr.chy-isinzshyra-Ca-0argcosz cosxchy +isin.rshy即10m+-。而cosz=cos(+iy)=cos(ziy)cosxshy+isinzshyOsdy所以CO5=CO%21-C-系数矩阵=1++0(3)sin=三sinz正确因为Ic1sinz=sin(r+iy)sin.zchy+icoszshya=0由克拉默法期知ax+dym sinrchy icoszshy_aran0再由C-R方程得sinz = sin(r +iy) = sin(z - iy)axay= sinzch(y) + icosrsh(y)于是u=C..U=C.sinrchyicosrshy即f(z)-C+iC:所以sinzsinz(5)au+bu-,其中a6与为不全为学的实常数12.找出下列方程的全部解;证明若a≠0由au十bv=c得(1) sinz=0;(2)c08z=0anC-bua(3) 1 + e = 0;(4)sinz+cosz=0baa-一面解((1)由sinz-0.得有a.arayaaye"-e-=0一宗岁一一由C-R方程a"即el=1ayarau(台)故=n(n=0,士1,士2,)于是ay(2)由cosz=0得e十e-it=0即e=-1.故7a[(台]+]-0即ay*号+(=0,±1,±2.))Z=a00aaa4:=0ararayayay(3)由1十e=0得e=-1.故Du-C.U-C=(2#+1)xi(n-0:±1±2.)of(z)-C,+ic,(4)由sinz+cos20得11.下列关系是否正确?1(-)++(*+e) =0()e-e)(2)cO52cO52(3) sinz = sinzen=-i即
·36.线性代数·复变画数·概率统计习延全解(中册)第二章解析函数.37.故二(#=0,±1.±2,)(5)左边sin号cos()+cossin(—)cos右边13.证明:(6) [cosz= lcoszchy- isinzshy](1)cos(z,+2,)cosz,cosz:sinz,sinz(coszchy)+(sinrshy))sin(z,+z,)msinz,cosz,+cosz,sing.cos'zch'y+sin'rsh'y(2) sing+cosz=1=cosz(1+shy)+(1-cosx)sh*)(3)sin2g=2sinzc08z;=cost+sh'y2tanz(4)tan2z同理Isinz=sin'r+sh'y1-tang14.说明;(5)sin)-z=cOSzcOs(a+)coSz:(1)当y→oo时,sin(+iy)和cos(a+iy)I趋手无穷大(6) lcosz=cos'g+ shy,sinzj"=sin'x + shiy(2)当!为复数时,sin|≤1和cosr|≤1不成立证明(1)cosz,cosz;-sine,sinz:囍(1)cos(a+iy)cosrchy-- isinzshye +e-ie+eie0-4Icos(r + iy)[=/cos'zch'y+ sin'zsh'y22i2e-we=(1-sin'z)(1+shy)+sin'zshy2ie +eo,+=cos'a+sh'y≥shylshy为奇函数,只须证,y>0时,shy>y,则有Ishyl>[yl.从面得elu,t,+e-itg-cos(z, +2) 5[cos(+iy)/>y]即得y0o时cos(r+iy)-00所以cos(+)cosz;cos;sinz;sin同理下证:y>0时,shy>y.而这是个高等数学问题。sin(z+,)=sinz,cost;+cosz,sinz:/(y)=shyy,(y)chy->0[e"lfe"+e-nl(2)左边一1-右边2所以2f(y)(当y>0时)(3)在(1)sin(z+)sinzcos+cosin中,可得而f(0)msho--0-0(3).所以f()>f(0)=02sinz/cosz2sinz-cosz即shy>y(当y>0时)(4)右边=1-sin'z/cos'zcos'a-sin'z关于sin(r+iy))为无穷大(当y→oo),也可类似证明。2(2)当为复数时,[sint|≤1和cost|≤1不成立,以cos为例+e-ee+e"ie-l+ecoSz1.81.547122所以icos/~1 >17sin2ztan2x=左边cos2215.求Ln(—1),Ln(-3+4i)和它们的主值。解Ln(-i)-Inl-il+iArg(-i)+i(2kx)
-线性代数·复变通数·概事统计习题全解(中量)解析西数·41.? 40 .、一第二章=cos(-y)chz-isin(y)shre证明1)h-sh=(+e)"2.cosychz + isinyshr 0e+e#-2=1e-+e+2(1)chzcosy = 02(2)(sinyshr=0(2) sht+cht=(-) +()22chz手0.由式(1)=cosy=0-2++e-+2Y+e-n.sy=h+-.1=0.±1..44ehter=ch2z(#+号)-0代人式(2),得2(3)shz,cht; + che;shs;→(±1)shz -0shz =01 =0-e-ee+ees+e2净-++iy-0+(号+)22222etts-e-t2eet-20t-13+2#_24+1号sh(+)(+=0.±1,.)2422chz,chz: + she;shzs(3)由(1)的推导过程知-nte.et+e-ei.a-esht-isinit(i)(—sinychz+icosyshz)=i2222Jsinychz = 1(1)et+e-uy=ch(t,+)(2)lcosyshr i0221.解下列方程:由式(2)若shz0,得(3) sh =i(1) shz = 0;(2) chz = 0;e-=1=021siniz misinit,shz=0(1)shz =解将工#0代人式(1)得siniz=01.siny=19y=2k#+号siniz=sin[i(r+iy)]=sin(-y+ir)由=sin(-y)cht+icosyshz=0若cosy=0得y=十号,代人式(1),得()Jsin(y)chzoasin(n+ 号)chr =1(2)lcosyshz0在式(1)中,chz≠=>sinym0y=kx(t=0,±1,)代人chr=±1式(2)cos(kx)shz=0.(±1)shr=0又chr>0恒成立,含去chr=—1z010191=0y=2k#+号schr=1a→-r+iy=0+ikx-k=0,±1..办+=++i9-2x+号)i(0=0,±1,± 2,)(2)chz=cos(iz)-0=cos(ie)=cos[i(+iy)]=cos(-y+ir)22.证明:(2.3,19)与(2.3.20)
第二章解折承数.43..42.线性代数·复变承数:概率统计习题全解(中量)等势线方程a-(y+1)=eecosyisincosyisinz csyischiy证明2速度方程为v(z)=2(-i)2cosy+ainycosy+isinyisiny(2)f()==(+y=(-y+2)(+y)shiy =22r-3ay+i(3r'y-y)chiycosy,shiy=isiny(2.3.19)得证F(z)=3z=3(z-y+2ryi)ch(a+iy)=cosi(r+iy)=cos(-y+ir)=()32=3(r-y-2ryi)w.cos(y)cosixsin(y)sini疏函数W(r.y)=3ry-y cosychz+ sinyshz流线方程(3-y)y=esh(a+iy)=isin[(r+iy)(-i)]=isin(y-iz)势函数,(zy)=ai-3y)isinyeosiricosysiniz等势线方程r(rt3y) shzcosy + ichrsiny建度方程为V(e) =3(2.3.20)得证-y-2rvi(3) F() =23.证明:shz的反函数Arshz=Ln(z++1)(-y+1)+4y设=shw,则证明2zf(z)--(2+1)w=Arshzw-()-22+2y+2+(22y+2y-22(e—e""),于是又z=shw=(r+y++4rye*-2xe"-1=0-2zy流函数)=-++ie"-+/+i-y+)+ry=ery流线方程w=Lne+Ve+i)1-y+l势函数)=(-+)+4Arshz=Ln(++1)邸r-y+l等势线方程(2-y+n+2y-e"24.已知平面流速场的复势F(s)为25速度方程为(e)=(3)2+1(2) 2*,(1) (z+ i))(* + 1)求流动的速度以及流线和等势线的方程。解()f()-(+i)=(a+y+i)=r-(y+)+2r(y+1)iF()-2(+)=()-2(-)=21-2(+1)aW(t,y)=2r(y+1)疏西数I2+---1流线方程ry)=-(y+1)势函数