§6-3基本定律与基本元件的相量形式 、KVL、KCL的相量形式 时域∑4=0∑=0 k=1 k=1 相量∑ Uk=0∑/=0 二、元件R、L、C在正弦电路中 1.电阻元件R 1)R中的瞬时电压与电流2=RiR 闪四 西南交通大学
西南交通大学 §6-3 基本定律与基本元件的相量形式 一、KVL、KCL的相量形式 时域 0 1 å = = b k k u 0 1 å = = b k k i 相量 å= = b k Uk 1 0 & 0 1 å = = b k k I & 二、元件R、L、C在正弦电路中 1.电阻元件R 1)R中的瞬时电压与电流 R RiR u =
如i=√2 eI. cOS(ot+v)则: l2=√2cosO+Vn)=√2Rl2cos(ot+v,) 所以(a)UR=RkR (b)uR与同相,即=v R 闪四 西南交通大学
西南交通大学 + - uR R iR 0 ωt uR iR 2 cos( ) R R i 如 i = I wt +y 2 cos( ) 2 cos( ) R R u R i u = U wt +y = RI wt +y 则: 所以 (b) uR与iR同相,即Ψ u =Ψi (a) UR = RIR Ψ u Ψi
2)R中的电压相量与电流相量 R 由瞬时表达式知: R R R RI R R 三HR 相量形式仍满足欧姆定律 闪四 西南交通大学
西南交通大学 2)R中的电压相量与电流相量 + - R UR & R I & UR & R I & 由瞬时表达式知: R R u R i R R R i U U RI RI I I & & & = = = = y y y R R U RI & = & 相量形式仍满足欧姆定律 Ψ u= Ψi
2.电感元件L 1)L中的瞬时电流与电压 L-(关联) d t 闪四 西南交通大学
西南交通大学 2.电感元件L 1)L中的瞬时电流与电压 0 ωt uL iL + - uL iL L dt di u L L L = (关联) Ψ u Ψi
如 2I, coS(at +y √2U4coso+vn)=L L [v2I Sin(at +V, )o]=2oLI, cos( ot +V, +90) 所以(a)U=oL (b)vn=+90°电压超前电流90° 2)L中的电压相量与电流相量 L L =UL/Yu=oLliv +90=jOLIL /Vi=jOLL L 西南交通大学 带
西南交通大学 2 cos( ) L L i 如 i = I wt +y dt di u U t L L L = 2 L cos(w +yu ) = [ 2 sin( ) ] 2 cos( 90 ) o = L - I L wt +yi w = wLI L wt +yi + 2)L中的电压相量与电流相量 所以 (b)yu =yi + 90o 电压超前电流90° (a) UL =ωLIL L L i I & = I y L L u L i L i L U U LI j LI j LI & y w y = w y = w & = = + 90°