3.从线性空间Vn到其自身的线性变换 如果Um=Vn,那么T是一个从线性空间n到其 自身的线性变换称为线性空间n中的线性变换 下面主要讨论线性空间Vn中的线性变换. 上页
, . , 自身的线性变换 称为线性空间 中的线性变换 如 果 那 么 是一个从线性空间 到 其 V U V T V n m = n n 3.从线性空间 V n 到其自身的线性变换 下面主要讨论线性空间 V n 中的线性变换.
例1在线性空间Pxl3中, (1)微分运算D是一个线性变换 eT V P=a3x+a2x+aix+oE P[x13, D=3a3x2+2a2x+a1, 9=b3x+62x+bix+boE Plx Dg=3b3x+2b2x+b1, 从而D(p+q) =D(a3+b3)x3+(a2+b2)x2+(a1+b1)x+(a0+b0 =3(a3+b)x2+2(a2+b2)x+(a1+b1) =(3a3x2+2a2x+a1)+(3b3x2+2b2x+b) Dp + DqE 上页
[ ] , 例 1 在线性空间P x 3中 (1) 微分运算D是一个线性变换. [ ] , 1 0 3 2 2 3 p = a3 x + a x + a x + a P x 3 2 , 2 1 2 Dp = a3 x + a x + a [ ] , 1 0 3 2 2 3 q = b3 x + b x + b x + b P x 3 2 , 2 1 2 Dq = b3 x + b x + b [( ) ( ) ( ) ( )] 1 1 0 0 2 2 2 3 = D a3 + b3 x + a + b x + a + b x + a + b 从而 D( p + q) 3( ) 2( ) ( ) 2 2 1 1 2 = a3 + b3 x + a + b x + a + b (3 2 ) (3 2 ) 2 1 2 2 1 3 2 = a3 x + a x + a + b x + b x + b = Dp + Dq;
D(kp)=D(ka3x'+ka2x+kajx+k ao =k(3a3x2+2a2x+a1) =kDp (2)如果T(p)=a0,那么T也是一个线性变换 T(p+q)=a0+b0=T(p)+T(q); T(p)=kao=kT(p) 上页
( ) ( ) 1 0 2 2 3 D kp = D k a3 x + k a x + k a x + k a (3 2 ) 2 1 2 = k a3 x + a x + a = kDp. (2) ( ) , . 如果T p = a0 那么T也是一个线性变换 ( ) ( ) ( ); T p + q = a0 + b0 = T p + T q ( ) ( ). T kp = k a0 = kT p