Elementary Matrix Definition 7.1.1 An elementary matrix is the result of applying a single elementary row operation to the identity matrix. 0 1 .EE,= 0 Tongji University】 7/19
Elementary Matrix . Definition 7.1.1 . . An elementary matrix is the result of applying a single elementary row operation to the identity matrix. (1). E ri↔rj −−−→ E(i, j) = . 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 1. . . . . . . . . . . . 0. . . . 1. . . . . . . . 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 1. . . . . . . . 1. . . . 0. . . . . . . . . . . . 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 1. . . (Tongji University) Linear Algebra 7 / 19
1 (2).Ex4E(ik)= (Tongji University) 8/19
(2). E r i × k −−→ E ( i ( k)) = . 1. . . . . . . . . . . . . . . . . . . 1. . . . . . . . k. . . . . . . . 1. . . . . . . . . . . . . . . . . . . 1. . . (Tongji University) Linear Algebra 8 / 19