主成分分析试图在力保数据信息丢失最少 的原则下,对这种多变量的截面数据表进行 最佳综合简化,也就是说,对高维变量空间 进行降维处理。 很显然,识辨系统在一个低维空间要比 在一个高维空间容易得多
主成分分析试图在力保数据信息丢失最少 的原则下,对这种多变量的截面数据表进行 最佳综合简化,也就是说,对高维变量空间 进行降维处理。 很显然,识辨系统在一个低维空间要比 在一个高维空间容易得多
在力求数据信息丢失最少的原则下,对高维的变 量空间降维,即研究指标体系的少数几个线性组合, 并且这几个线性组合所构成的综合指标将尽可能多 地保留原来指标变异方面的信息。这些综合指标就 称为主成分。要讨论的问题是: (1)基于相关系数矩阵还是基于协方差 矩阵做主成分分析。当分析中所选择的经济变 量具有不同的量纲,变量水平差异很大,应该 选择基于相关系数矩阵的主成分分析
(1) 基于相关系数矩阵还是基于协方差 矩阵做主成分分析。当分析中所选择的经济变 量具有不同的量纲,变量水平差异很大,应该 选择基于相关系数矩阵的主成分分析。 在力求数据信息丢失最少的原则下,对高维的变 量空间降维,即研究指标体系的少数几个线性组合, 并且这几个线性组合所构成的综合指标将尽可能多 地保留原来指标变异方面的信息。这些综合指标就 称为主成分。要讨论的问题是:
(2)选择几个主成分。主成分分析的目 的是简化变量,一般情况下主成分的个数应 该小于原始变量的个数。关于保留几个主成 分,应该权衡主成分个数和保留的信息。 (3)如何解释主成分所包含的经济意义
(2) 选择几个主成分。主成分分析的目 的是简化变量,一般情况下主成分的个数应 该小于原始变量的个数。关于保留几个主成 分,应该权衡主成分个数和保留的信息。 (3)如何解释主成分所包含的经济意义
§2数学型与几何解驿 假设我们所讨论的实际问题中,有p个指 ,我们把这p个指标看作p个随机变量,记为X1, ,X,主成分分析就是要把这p个指标的问 ,转变为讨论p个指标的线性组合的问题,而 这些新的指标F1,F2,…,F(k≤p),按照保留 主要信息量的原则充分反映原指标的信息,并且 相互独立
§2 数学模型与几何解释 假设我们所讨论的实际问题中,有p个指 标,我们把这p个指标看作p个随机变量,记为X1, X2,…,Xp,主成分分析就是要把这p个指标的问 题,转变为讨论p个指标的线性组合的问题,而 这些新的指标F1,F2,…,Fk(k≤p),按照保留 主要信息量的原则充分反映原指标的信息,并且 相互独立
这种由讨论多个指标降为少数几个综合指 标的过程在数学上就叫做降维。主成分分析通 常的做法是,寻求原指标的线性组合F F1=a41X1+221X2+…+n1X X,+LX+…+lX X,+l1X+…+X
p p p pp p p p p p F u X u X u X F u X u X u X F u X u X u X = + + + = + + + = + + + 1 1 2 2 2 12 1 22 2 2 1 11 1 21 2 1 这种由讨论多个指标降为少数几个综合指 标的过程在数学上就叫做降维。主成分分析通 常的做法是,寻求原指标的线性组合Fi