ZB,Ya -Ia/cha'= ZwAX-D.-2A,Xx; - B,Yu + Cacha, = b.E(1.73)2AX-2 BY+ + Cashad +SDiT1fa/Puysina/x = Z,台A2AXu-2BYu-2c,aR,sina, - Da/sha/ = 0H0i=1.2.3,..aGacosp1+0cosp,式中XYu=(MTa-aHSu)L"N(P))aTacoseSH cospa.ZX=(LV-a,E,U,)台XN(P)g(A)N)a,FucosprA1+2p.G,Nasina/A, Zu--ZaNatheaYg-Xs=2N(3)二22N.(Mash-Husna,a).Xu,-213'Qa(Lashp! -Eysha))YalANusin(α.- β)13"FuQusinasin(a,+3)Yi=Sa, - ,α+32a'cha, sina,sinf(a-)A) sin(a'+)Pu=Q. =+aQ-3a+"a,cha,isina,2a,cha'sina.2a.cha,asina,U.S.IRt-aj-o+au+af2sina42singk0.2=0a.44T=V.2alp,chp,Asina'a2ap,'chp'sinak≠0.k乎0a+a3b,5.应力分量由式(1.73)之代数方程组确定常数A、BC.和D后,将它们代入式(1.57)、(1.67)和(1.59)之、和的式子中,然后再将、和的表达式代入式(1.13)中即得到应力分量的表达式:cha,tcosa'y2 co8(Luf;(c2) ~ a/ ,cha/2])AJ=台cha,!NP/S-0cosatchaya.F.2B.J1十scosa,cosCa.cosa.zchaycha,aNB)-j-a[cha,'zcosa'ya,'GSZBj osa,ichay6.=scos.icosay+2NScha;cha,a-cosBZD. Ta/cha/ Zeosa'syFcMigi(y)-a,H,cha,3j+N(B,)acosigi(y)N(β,)g(a)-16
(LyshP/ - E,sha/2)sinp)3G,sinzsingyF,sina,sinp,y-B,(Mshp,y-H,shay)sinpasingsa:Dsharsinay+C,a,sina,zsha,y+(1.74)台chp,aE-(三)反对称荷载情形的解答1.求解e将式(1.53)中之待确定函数g1(y)和gz()表示为如下级数形式:ZAsinp!yg1(3)(2)Bcosa,式中A:和B,为待定系数:g=(—0.5),=i/X于是,边值问题(1.53)之解为cosa,tshaych/zsin/A+ B;o.(1.75)chp!sha,a2.求解将式(1.75)代入式(1.54)中,仿对称荷载情形下求解的方法,利用有限积分变换法求解边值问题(1.54),得S sine/(L,sha/2 - E,shp/) -28.21Fusina,zsina/yu-A>12A二ha,ysina,(1.76)3!E.!Ensint1+"式中E.=a,+pa-a,F.F/=2achaisina/4B!E,chp!--E1+uFuU(at-a,)sha,d)ar+a,?a,cha!a:=(j一0.5)元/^,C.为积分常数,由下式确定:7C,a,cha,-sina,zdi, i=1,2,3,*(1.77).3.求解将式(1.75)代入式(1.55)中,有4/ch!zo+Ba.cosa,zcha,+ 27chp!Fay0shaa;(1.78) B,cosa, 干4(2)a=±1,了一入,子Eway在此情形下,如果用有限积分变换法求解边值问题(1.78)将会遇到一些麻孩,因此,我们采用另一方法求解边值问题(1.78)。将边值问题(1.78)之解表示为shpicosp1t#[D.chp!zcoy+E.cospzche-1:2chp!yshaycosa,+(1.79)R2sha;a17
式和E,为任意常数,3=证不连验证,式(1.79)已*足英(1.78)第一式之微分方程,其中常数),和E,将由式(1.78)中之两个边界条件予以确定。将式(1.79)代入我(1.78)的边界条伴·1,有2A,[去(P/ + thP/)Gu -oshu-E,shp/)20[ing-]CaM,sinaj+入32usha,ajin47sina,aD,P/Gshp/-1=1.2,3,.(1. 80)ka!1-(1+)+,pNh,-- 1.23(1.81)20H,2a/sha/ising/2_4a,a/cha,Asina2G=sin(c-+ sin[(a'式中1--P)(a+3,)A(a+α)2tcha.inaaNu,- sin(a,--)sin(a,+p)H.-0:-(cos1(+u)a;+3,2式(1.80)和<1.81)中不包含常数D。和E,,故它们的值未定。由式(1.79)可以看出,(D。十E。)代表梁沿轴方向的刚位移,须利用染的位移约束条件来确定。例如,设在坐标原点2 (D.+E.).处=0,则有(D十E,)=04确定常数A,、B.、C.D.及E同样,式(1.75)、(1.76)及(1.79)中常数A、C、D和E.的确定,除利用式(1.77)、(1.80)和(1.81)之条件外,尚须利用式(1.71)和(1.72)的两个条件。最后,由上述五个条件得到确定常数A、B、C.、D,和E,的如下线性代数方程组:A(p/th:)+D.Pch2! -ZE,P,S,cosP, = 02u1+va.s,N,p,shp,A=- ai1B;itha20f=1ZA,Xu - B,Yu + Cgashe,A = a.A2A.Xuy - B, 表"ax - Cacha^ -D,p/P,cosB/a2u1-1-47singZE,PRchP,A- s2:2-2D,R/ Gnshp/ - 47sina/2SBYsiZC,a,M,sinajAXx+aEi1.2,3..(1.82)2sina'aca LATa--P/E.Un),,tutlopp式中X一22uchp;A'(Lysha/ - E,shg))Xy1=*(9} + thB/G, -2u18
alF+uaHaiFaY.sina'a,YxundA20shaA12p'shpacospa2a,cha'sina,2a,chp, sina,S,T.Uu明+3)α+a+2(p)-a,)chpsina29,chp/sina28,shp,sinaPa-Q (a+a+p,zd+psin(a - p,)sin(a, + β)R,Q-β,(a: +p)5.应力分盘将式(1.75)、(1.76)和(1.79)之、云和代入式(1.13)即得到反对称荷载情形下的应力表达式:chzsin5+[a/ Lycha/-B!E,chp!Jsina/5Achp!Dcosa,zsha,y o0g2sin/3Ca.cosazshayAshaafchisinp1+Bzshpsinchp!2uchp'-[cosa,sha,1+(sha,+ycha,)cosa,一2usha,ashaxZDpchp/zsin/+ZE.cosp,ish.[(sh+chcosZAa.20chp!Bagshaysina,?2d)+(Lsha/z-Eusha2)cosa/3+20sha,a!-129&Cia,sina,ichayF,sina,zcosa/y台LSE3sinp.chpy+27shcos"-(1.83)利用上述解析解,我们对简支深梁的应力进行了具体的数值计算。计算分为两种情形:a92,0,并取:一为简支深梁只受均布荷载而无自重,即()量o一(1+0)(1-20)1.0,入=1.0,0.2.=0.167,计算结果绘在图1.8上,如实线所示者,UE2ab,并取7(1+0)20)a1. 0.=另一为只有自真而无外荷载,即()=0.2一UE1.0,=0.2,u0.167计算结果绘在图1.9上;如实线所示。对上述两种情形,计算中均取级数之前20项。为了验证解析解的正确性,对上述两种荷载情形下简支深梁的应力,又采用有限元法进行了计算。计算中利用问题的对称性,取深梁右半部分为计算对象,单元划分如图1.10所19
t.00220.080. 001.000.00(3.18(0.07)(0.99)(1.00)(0. 01)(0. 03)02100.120.91.0100.001.170.000. 120. 00(0.19)(0. 11)(0.01)(0. 91)(1.GO)(1.00)(0. 04)(0.03)0.100ODoO0.35 )0.530. 230. 000.9300. 001.640.000. 37(0. 35)(0. 28)(0.01)(0.52)(0. 94)K1.66)(0.09)(0. 15)(0.37>④?10.09O0. 250.000.006.43.75'10.000, 420.00(0.14)(0.02)(0.06)(0.46)13.907 i(0. 04)+(0. 45)Q.26)(0.42)2.020.000.000.000.00(2.20)(1.71)(0.02)(0. 07)(0. 02)(0, 07)(c分布图(a),分布图",分布图(6))内的值为有限元结巢注括号()国1.8荷乾应力分布田1515130.800.650.000.000.000.00(0.38)(0.16)(0.08)(0.10)[(0.02)(0.06)0.51D0.350.480.170.52n.an0.000.220.00(0.02)(0.38)0.52)(0.22)(0.22)(0.41)(0. 07)(0.07)(0.23))eee10000. 470. 000.070.850.3000o.820. 00(0.71)(0. 46)(0.05)(0.03)(0. 89)(2.32)7(0.20)(0.30)(0.740)+)OO10.05?0.000.340.660.003.430.827.420. 00(0. 上I)0.28)(0.51)(7.40)Ko.84)(0.30)(0.08)(0.37).530.000.000.000.00(4.42)(0.13)(3.44)(0.02)(0.03)(0. 13)(a),分布图(5),分布图《e)分布图注:括号()内的演为有限元结果周1.9日集应力分布图示,并利用SAP5程序进行计算。计算结果也分别绘在图1.8和1.9上,如虚线所示。由图可以看出,解析解与有限元结果吻合良好,证实了解析解的正确性。1一4连续深梁的应力分析如图1.11(a)所示连续深梁,长度是无限的,支承于等距离的支座上,文座间的距离(中心线到中心线)为24,梁高为2b,支座宽为2c.各跨度内梁的上边界承受相同的关于跨度铅直20