§2.1达朗贝尔公式 定解问题: l1n=ax,-0<x<<1> l10=0(x),-0<x<0<2> 0=V(x),2-∞<x<<3>
§2.1 达朗贝尔公式 一、定解问题: ï î ï í ì = -¥ < < ¥ < > = -¥ < < ¥ < > = -¥ < < ¥ < > = = | ( ), 3 | ( ) , 2 , 1 0 0 2 u x x u x x u a u x t t t tt xx y j
二、求解: 1、分析:对于常微分方穆/(0)=0 y(0)=0 y(O)=1/3 先求通解: y(t)=At+B A.0+B=0 再用初始条件求特解: →B=0 A=1/ y()=(1/3)t
y(t) = At + B 0 1/ 3 0 0 ® = î í ì = × + = B A A B 二、求解: 1、分析:对于常微分方程 ï î ï í ì ¢ = = ¢¢ = ( ) 1/3 (0) 0 ( ) 0 y o y y t 先求通解: 再用初始条件求特解: y(t) = (1/ 3)t
启示:简化偏微分方程,先求通解,再求其特解 若将方程<1>化为型如: 则通解简单易求,故引入变换 首先,将<1>变为=0 22a?? 02 a=0 即(+ax)( a u=o ot ox ot Ox
启示:简化偏微分方程,先求通解,再求其特解 若将方程<1>化为型如: uxh = 0 ( ) 0 2 2 2 2 2 = ¶ ¶ - ¶ ¶ u x a t 则通解简单易求,故引入变换 首先,将<1>变为 ( )( ) = 0 ¶ ¶ - ¶ ¶ ¶ ¶ + ¶ ¶ u x a x t a t 即
若引入 t=l(, 使得:=+00x=2+a at ax 00t0x =A(+a n at an ax an a t dx 则方程1>化为 0
î í ì = = ( , ) ( , ) x h x h t t x x 若引入 ( ) x a t A x x t t ¶ ¶ + ¶ ¶ = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ = ¶ ¶ x x x 使得: ( ) x a t A x x t t ¶ ¶ + ¶ ¶ = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ = ¶ ¶ h h h 则方程 uxh = 0 <1>化为
t Ox 为此需要:0 t x an an 故可令: x=a(2+m) E=(x+ at)/2a In=(xr-at)/2a
ïïîïïíì = ¶¶ = ¶¶ 11 hxtt ïïîïïíì = - ¶¶ = ¶¶ a x a xh 为此需要: x 故可令: îíì = - = + x hx h tx a ( ) îíì = - = + x at a x at a ( ) / 2 ( ) / 2 h 即: x