第三章线性系统的时域分析法 线性系统的时域分析法 引言 一阶系统时域分析 二阶系统时域分析 高阶系统的时域分析 线性系统的稳定性分析 线性系统的稳态误差计算
第三章 线性系统的时域分析法 线性系统的时域分析法 引言 一阶系统时域分析 二阶系统时域分析 高阶系统的时域分析 线性系统的稳定性分析 线性系统的稳态误差计算
第三章线性系统的时域分析法 3.1引言 ■分析控制系统的箅一步是建立模型,数学模型一旦建立,第二步分析控制性腔, 分析有多种方法,主要有时域分析法,频域分析法,根轨迹法等。每种方法,各 有千秋。均有他们的适用范围和对象。本章先讨论时域法。 实际上,控制系统的输入信号常常是不知的,而是随机的。很难用解析的方法表 示。只有在一些特殊的情况下是预先知道的,可以用解析的方法或者曲线表示。 例如,切削机床的自动控制的例子。 在分析和设计控制系统时,对各种控制系统性能得有评判、比较的依据。这个依 据也许可以通过对这些系统加上各种输入信号,比较它们对特定的输入信号的响 应来建立。 许多设计准则就建立在这些信号的基础上,或者建立在系统对初始条件变化(无 任何试验信号)的基础上,因为系统对典型试验信号的响应特性,与系统对实际 输入信号的响应特性之间,存在着一定的关系;所以采用试验信号来评价系统性 能是合理的
第三章 线性系统的时域分析法 3.1 引言 分析控制系统的第一步是建立模型,数学模型一旦建立,第二步 分析控制性能, 分析有多种方法,主要有时域分析法,频域分析法,根轨迹法等。每种方法,各 有千秋。均有他们的适用范围和对象。本章先讨论时域法。 实际上,控制系统的输入信号常常是不知的,而是随机的。很难用解析的方法表 示。只有在一些特殊的情况下是预先知道的,可以用解析的方法或者曲线表示。 例如,切削机床的自动控制的例子。 在分析和设计控制系统时,对各种控制系统性能得有评判、比较的依据。这个依 据也许可以通过对这些系统加上各种输入信号,比较它们对特定的输入信号的响 应来建立。 许多设计准则就建立在这些信号的基础上,或者建立在系统对初始条件变化(无 任何试验信号)的基础上,因为系统对典型试验信号的响应特性,与系统对实际 输入信号的响应特性之间,存在着一定的关系;所以采用试验信号来评价系统性 能是合理的
3.1.1典型试验信号 Typical test signals (1)实际系统的输入信号不可知性 (2)典型试验信号的响应与系统的实际响应,存在某种关系 (3)电压试验信号是时间的简单函数,便于分析。 突然受到恒定输入作用或突然的扰动。如果控制系统的输入量是随时间逐步变化的 函数,则斜坡时间函数是比较合适的。 (单位)阶跃函数( Step function)l(),t≥0室温调节系统和水位调节系统 (单位)斜坡函数( Ramp function)速度t,t≥0 (单位)加速度函数( Acceleration function)抛物线 t2.t≥0 (单位)脉冲函数( Impulse function)(t),t=0 正弦函数( Sinusoidal function) Asinus,当输入作用具有周期性变化时 通常运用阶跃函数作为典型输入作用信号,这样可在一个统一的基础上对各种控 制系统的特性进行比较和研究。本章讨论系统对非周期信号(Step、Ramp、对 正弦试验信号相应,将在第五章频域分析法,第六章校正方法中讨论)
3.1.1 典型试验信号 Typical test signals (1) 实际系统的输入信号不可知性 (2) 典型试验信号的响应与系统的实际响应,存在某种关系 (3) 电压试验信号是时间的简单函数,便于分析。 突然受到恒定输入作用或突然的扰动。如果控制系统的输入量是随时间逐步变化的 函数,则斜坡时间函数是比较合适的。 (单位)阶跃函数(Step function) 1(t) , t 0 室温调节系统和水位调节系统 (单位)斜坡函数(Ramp function) 速度 t , t 0 (单位)加速度函数(Acceleration function)抛物线 , 0 2 1 2 t t (单位)脉冲函数(Impulse function) (t) , t = 0 正弦函数(Simusoidal function)Asinut ,当输入作用具有周期性变化时。 通常运用阶跃函数作为典型输入作用信号,这样可在一个统一的基础上对各种控 制系统的特性进行比较和研究。本章讨论系统对非周期信号(Step、Ramp、对 正弦试验信号相应,将在第五章频域分析法,第六章校正方法中讨论)
3.1.2动态过程和稳态过程 瞬时响应和稳态响应 Transient Response& Steady state Response 在典型输入信号作用下,任何一个控制系统的时间响应 1瞬态响应指系统从初始状态到最终状态的响应过程。由于实际控制 系统具有惯性、摩擦、阻尼等原因 ■2稳态响应是指当t趋近于无穷大时,系统的输出状态,表征系统输入量 最终复现输入量的程度。 ■3.1.3绝对稳定性,相对稳定性和稳态误差 Absolute Stability, Relative Stability, Steady state Error 在设计控制系统时,我们能够根据元件的性能,估算出系统的动态特性。 控制系统动态特性中,最重要的是绝对稳定性,即系统是稳定的,还是 不稳定的。如果控制系统没有受到任何扰动,或输入信号的作用,系统 的输出量保持在某一状态上,控制系统便处于平衡状态。如果线性定常 控制系统受到扰动量的作用后,输出量最终又返回到它的平衡状态,那 么,这种系统是稳定的。如果线性定常控制系统受到扰动量作用后,输 出量显现为持续的振荡过程或输出量无限制的偏离其平衡状态,那么系 统便是不稳定的
3.1.2 动态过程和稳态过程 瞬时响应和稳态响应 Transient Response & Steady_state Response 在典型输入信号作用下,任何一个控制系统的时间响应。 1 瞬态响应 指系统从初始状态到最终状态的响应过程。由于实际控制 系统具有惯性、摩擦、阻尼等原因。 2 稳态响应 是指当t趋近于无穷大时,系统的输出状态,表征系统输入量 最终复现输入量的程度。 3.1.3 绝对稳定性,相对稳定性和稳态误差 Absolute Stability , Relative Stability ,Steady_state Error 在设计控制系统时,我们能够根据元件的性能,估算出系统的动态特性。 控制系统动态特性中,最重要的是绝对稳定性,即系统是稳定的,还是 不稳定的。如果控制系统没有受到任何扰动,或输入信号的作用,系统 的输出量保持在某一状态上,控制系统便处于平衡状态。如果线性定常 控制系统受到扰动量的作用后,输出量最终又返回到它的平衡状态,那 么,这种系统是稳定的。如果线性定常控制系统受到扰动量作用后,输 出量显现为持续的振荡过程或输出量无限制的偏离其平衡状态,那么系 统便是不稳定的
图3-1稳定性分析示意图
图 3-1稳 定 性 分 析 示 意 图