91电阻与电导 材料论 Ohm’sLaw.=IR R 电阻率 第九章电性能 l/p(Q2-m 电导率 些金属的室温电导率 Conductors -107(Q2-m) 半导体 68×107 Materials SEmiconductor 10-6-104(Q2-m)- Aluminum(铝) Insulators 10-10-10-20(2-m)-I Brass( 70Cu-30Zn) 防静电材料:105-109(g2-m Stainless stee(不锈钢) 0.2×10 些陶瓷的电导率 些聚合物的电导率 (m) Concrete(dry)(混凝土) Polymethyl methacrylate(有机玻璃) (钠玻璃) 1010-10-12 Aluminum oxide(氧化铝) Polytetrafluoroethylene(聚四氟乙烯)<1017 Fused silica(熔硅)
1 材料导论 第九章 电性能 Ohm’s Law: V = IR Resistivity: Conductivity: σ = 1/ρ (Ω-m)-1 Il VA l RA ρ = = 9-1 电阻与电导 欧姆定律 电阻率 电导率 (Ω-m) Materials Conductors ~107(Ω-m)-1 Semiconductor 10-6~104 (Ω-m)-1 Insulators 10-10~10-20 (Ω-m)-1 半导体 绝缘体 导体 防静电材料:10-5~10-9 (Ω-m)-1 Silver (银) 6.8 × 107 Copper (铜) 6.0 × 107 Gold (金) 4.3 × 107 Aluminum (铝) 3.8 × 107 Brass(70Cu-30Zn) 1.6 × 107 Iron (铁) 1.0 × 107 Platinum (铂) 0.94 × 107 Plain carbon steel (碳钢) 0.6 × 107 Stainless steel (不锈钢) 0.2 × 107 一些金属的室温电导率 Metal Electrical conductivities (Ω-m)-1 Material Electrical Conductivity [(Ω-m)-1] Graphite(石墨) 3 × 104-2 × 105 Concrete (dry) (混凝土) 10-9 Soda-Lime glass(钠玻璃) 10-10-10-11 Porcelain (陶土) 10-10-10-12 Borosilicate glass (硼玻璃) ~ 10-13 Aluminum oxide (氧化铝) <10-13 Fused silica (熔硅) <10-18 一些陶瓷的电导率 一些聚合物的电导率 Material Electrical Conductivity [(Ω-m)-1] Phenol-formaldehyde(酚醛) 10-9-10-10 Polymethyl methacrylate (有机玻璃) <10-12 Nylon 6,6 (尼龙) 10-12-10-13 Polystyrene (聚苯乙烯) <10-14 Polyethylene (聚乙烯) 10-15-10-17 Polytetraftuoroethylene (聚四氟乙烯) < 10-17
Electron Energy Band(电子能 带) energy b Energy band gapl Individual allowed energy states 个原子的情况 平闻距 Interatomic separation(原子间距) 代衰:一价金属(惘) 代表:二价金属(镁) 绝缘体 半导体 上mpty Empty Empty Emp conduction band Band gap Band gap Empty sta Filled Filled Filled states Band gap < 2ev excitation Electron valence
2 2s Electron state 1s Electron state Electron Energy Band (电子能 带) 2sElectron energy band (12 states) 1sElectron energy band (12 states) Energy Individual allowed energy states Interatomic separation(原子间距) 12个原子的情况 原子间距 Energy band Energy band gap Energy band Energy Energy 平衡间距 Empty band (b) (a) Ef Ef Filled states Empty states Band gap Empty band Filled band 代表:一价金属(铜) 代表:二价金属(镁) Empty conduction band Empty conduction band Band gap Band gap Filled valence band Filled valence band (d) (c) Band gap > 2eV Band gap < 2eV 绝缘体 半导体 ∆Ef Energy Filled states Empty states Electron excitation ∆Ef Free Electron ∆E Eg Energy Conduction band Valence band Band gap Hole in valence band Electron excitation
(散射) Drift vel Va=He 迁移速率 Electron mobility: ue(m2/V-s) 电于迁移率 电子迁移性 Conductivity: o=neue 电导率 电子净运动 INFLUENCE OF TEMPERATURE (温度的影响) P1+P+ t- thermal(热) (杂质) d- deformation(形变) o与a为材料常数 INFLUENCE OF PLASTIC DEFORMATION INFLUENCE OF IMPURITIES (塑性形变的影响) (杂质的影响) impurity concentration c, in terms of the atom fraction -2.16 at %Ni 杂质浓度为原子分数 Deformed For a two-phase alloy consisting of a and B phases u+L 12 at Ni 两相体系:P-PBa+pB
3 E Scattering events (散射) 电子净运动 电子迁移性 Drift velocity: Vd = µeE Conductivity: e σ = n e µ Electron mobility: µe (m2/V-s) 迁移速率 电子迁移率 电导率 t – thermal (热) i – impurity (杂质) d – deformation (形变) Mathiessen’s Law ρtotal = ρt + ρi +ρd ρt = ρ0 + aT INFLUENCE OF TEMPERATURE (温度的影响) ρ0与a为材料常数 两相体系: ρi = ραVα+ ρβVβ For a two-phase alloy consisting of α and β phases ρi = Aci (1-ci ) impurity concentration ci in terms of the atom fraction 杂质浓度为原子分数 INFLUENCE OF IMPURITIES (杂质的影响) INFI.UENCE OF PI.ASTIC DEFORMATION (塑性形变的影响) –250 –200 –150 –100 –50 0 +50 Cu + 3.32 at % Ni Cu+2.16 at % Ni Deformed Cu+1.12 at % Ni “Pure” copper Temperature (°C) Electrical resistivity ( Ω-m×10-8) 6 5 4 3 2 1 0 ρd ρi ρt
铜镍合金的室温电阻率与组成的关系 92半导体 c点2豆点 Intrinsic:电性能由电子结构所决定 Extrinsic:电性能受杂质原子控制 电导率电子迁移率空穴迁移率 Material Band Gap ElectricalElectronHole INTRINSIC CONDUCTION el Conductivity Mobility Mobilin [(Q2-mr](m/v-s) (mr//-s) (本征电导 Field 0.14 0.05 0.67 Ill-V Compounds InSb 0 ll-VI Compounds ZnTe 0.01 EXAMPLE PROBLEM 本征电导率 硅室温电导率为4x104(Qm)4;电子与空穴 迁移率分别为0.14和0.048mV-s。求宣温下的电子 SOLUTION o=neue+ pll an 材料为纯质,电子与空穴浓度应相等。故 n-p- o=nlel(ue+un)=ple (ue+h) (1.6×10-C(0.14+0.048m2/V 133×10°m
4 Electrical resistivity (10-8 Ω-m) Composition (wt% Ni) 0 10 20 30 40 50 50 40 30 20 10 0 铜镍合金的室温电阻率与组成的关系 Intrinsic: 电性能由电子结构所决定 Extrinsic:电性能受杂质原子控制 9-2 半导体 Elemental Si 1.11 4 × 10-4 0.14 0.05 Ge 0.67 2.2 0.38 0.18 III-V Compounds GaP 2.25 - 0.05 0.002 GaAs 1.42 10-6 0.85 0.45 InSb 0.17 2 × 104 7.7 0.07 II-VI Compounds CdS 2.40 - 0.03 - ZnTe 2.26 - 0.03 0.01 Material Band Gap (eV) Electrical Conductivity [(Ω-m)-1] Electron Mobility (m2/V-s) Hole Mobility (m2/V-s) 材料 带隙 电导率 电子迁移率 空穴迁移率 INTRINSIC CONDUCTION (本征电导) Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Free electron Hole E Field ( ) ( ) e h e h σ = n e µ + µ = p e µ + µ e h σ = n e µ + p e µ 本征电导率 纯硅室温电导率为 4 × 10-4 (Ω-m)-1; 电子与空穴 迁移率分别为0.14和 0.048 m2/ V-s。 求室温下的电子 与空穴浓度。 EXAMPLE PROBLEM SOLUTION 因材料为纯质,电子与空穴浓度应相等。故: 16 3 19 2 4 1 1.33 10 m (1.6 10 C)(0.14 0.048m / V ) 4 10 ( m) ( ) − − − − = × × + • × Ω• = + = = s e n p µe µh σ
EXTRINSIC SEMICONDUCTION n-Type EXTRINSIC SEMICONDUCTOR 所有工业化的半导体都是 extrinsIc;其电性质由 杂质所决定 Extrinsic半导体( both n-andp-type)都由高纯度单 aea aa. a 质制得,杂质浓度约107at%制备过程中人为掺 入预定量的电子供体或受体。这种掺混称为 :嗇:嗇:嗇:需:壽需:需 doping(掺杂) 由电子 n>> p 供体态 0=n p-Type EXTRINSIC SEMICONDUCTOR 息盒 空穴价
5 EXTRINSIC SEMICONDUCTION 所有工业化的半导体都是extrinsic; 其电性质由 杂质所决定。 Extrinsic 半导体(both n- and p-type) 都由高纯度单 质制得,杂质浓度约10-7 at%. 制备过程中人为掺 入预定量的电子供体或受体。这种掺混称为 doping(掺杂). Si (4+) P (5+) Si (4+) Si (4+) Si (4+) Si (4+) Si (4+) Si (4+) Si (4+) Si (4+) Si (4+) Si (4+) n-Type EXTRINSIC SEMICONDUCTOR Si (4+) P (5+) Si (4+) Si (4+) Si (4+) Si (4+) Si (4+) Si (4+) Si (4+) Si (4+) Si (4+) Si (4+) E Field Eg Conduction band Valence band Band Energy gap 供体态 传导带 中的自 由电子 E’g e n e n p σ ≅ µ >> Si (4+) Si (4+) Si (4+) Si (4+) Si (4+) Si (4+) Si (4+) Si (4+) Si (4+) Si (4+) Si (4+) B (3+) Hole p-Type EXTRINSIC SEMICONDUCTOR Si (4+) Si (4+) Si (4+) Si (4+) Si (4+) Si (4+) Si (4+) Si (4+) Si (4+) Si (4+) Si (4+) B (3+) E Field 空穴价 Eg Conduction band Valence band Band Energy gap 受体态