江蘇科技大学jiangsu university of sclence and technology$ 10- 2单自由度体系的自由振动.自由振动微分方程的建立kmkkymmi口刚度法根据达朗贝尔原理,列平衡方程:(10-1)mj+ky=01School of Civil Engineering and Architecture
11 School of Civil Engine School of Civil Engineering and Architecture ring and Architecture §10- 2 单自由度体系的自由振动 一.自由振动微分方程的建立 y k 刚度法 根据达朗贝尔原理,列平衡方程: m y ky 0 (10 1) m y y m m ky y k
江蘇科技大学jiangsu university of sclence andtechnologymWW口柔度法ykymmi质体的动位移等于质体在惯性力作用下的静位移。位移协调条件列方程y=FS =(-mi)oF=-mji体系所受惯性力:y=01mi-单位力产生的位移:S=k12SchoolofCivil EngineeringandArchitecture
12 School of Civil Engine School of Civil Engineering and Architecture ring and Architecture 柔度法 0 1 1 my y y F my m y y m m ky y 位移协调条件列方程 体系所受惯性力: 单位力产生的位移: k F my 1 1 质体的动位移等于质体在惯性力作用下的静位移
江蘇科技大学jiangsu university of sclence and technology自由振动微分方程的解设初始条件为 :kj(0)= yo, j(0)= voj+=y=0mi+ky=0mk0=VomC=%0j+のy=0 (10-2)式(10-2)的通解为:y(t) = o sin ot + yo cos ot0t)=Gsinot+c cosot(10-3)1School of Civil Engineering and Architecture
13 School of Civil Engine School of Civil Engineering and Architecture ring and Architecture 二.自由振动微分方程的解 0 y0 m k m y ky y 令 0 (10 2) 2 y y m k 式(10-2)的通解为: y(t) c sint c cost 1 2 设初始条件 为: 0 0 y 0 y ,y 0 v 2 0 0 1 c y v c (10 3) ( ) sin cos 0 0 t y t v y t
江药科技大学jiangsu university of sclence and technologyy(t) = ' sin ot + yo cos ot(10-3)(10-3)可看出,振动由2部分组成:振动ycosot口初始位移yo(vo=0)引起的质点按振动口初始速度v。(y。=0)引起的质点按sinot0yo00Vo014School of Civil Engineering and Architecture
14 School of Civil Engine School of Civil Engineering and Architecture ring and Architecture (10-3)可看出,振动由2部分组成: 初始位移y0 (v0=0)引起的质点按 振动 初始速度v0(y0=0)引起的质点按 振动 y cost 0 t v sin 0 T 0 y 0 y 0 y t T 0 0 v 0 v y t T y a a t 0 ( ) sin cos (10 3) 0 0 t y t v y t
江蘇科技大学jiangsu university of sclence and technology或写成(10-4)t)=asin(at+α)振幅y.oy.o初始相位角α =arctg1gVoVo15School of Civil Engineering and Architecture
15 School of Civil Engine School of Civil Engineering and Architecture ring and Architecture 0 1 0 0 0 2 0 2 0 v y tg v y arctg v a y , 或写成 y(t)asin(t) (104) ——初始相位角 ——振幅