二重积分的概念和性质 在一元函数积分学中,我们已经知道,定积 分是定义在某一区间上的一元函数的某种特定形 式的和式的极限,由于科学技术和生产实践的发 展,需要计算空间形体的体积、曲面的面积、空 间物体的质量、重心、转动惯量等,定积分已经 不能解决这类问题,另一方面,从数学逻辑思维 的规律出发,必然会考虑定积分概念的推广,从 而提出了多元函数的积分学问题
文件格式: PPT大小: 747.5KB页数: 29
从18世纪以来,无穷级数就被认为是微积分的 个不可缺少的部分,是高等数学的重要内容,同 时也是有力的数学工具,在表示函数、研究函数性 质等方面有巨大作用,在自然科学和工程技术领域 有着广泛的应用 本章主要内容包括常数项级数和两类重要的函 数项级数幂级数和三角级数,主要围绕三个问 题展开讨论:①级数的收敛性判定问题,②把已知 函数表示成级数问题,③级数求和问题
文件格式: PPT大小: 501KB页数: 33
幂级数 一、函数项级数的一般概念 1.定义: 设u1(x),2(x),n(),…是定义在ICR上的函数,则n(x=(x)+(x)+…+(+…
文件格式: PPT大小: 694.5KB页数: 33
在研究级数时,中心问题是判定级数的敛散 性,如果级数是收敛的,就可以对它进行某些 运算,并设法求出它的和或和的近似值但是除 了少数几个特殊的级数,在一般情况下,直接 考察级数的部分和是否有极限是很困难的,因 而直接由定义来判定级数的敛散性往往不可行 ,这就要借助一些间接的方法来判定级数的敛 散性,这些方法称为审敛法
文件格式: PPT大小: 0.99MB页数: 38
函数展开成幂级数 由于幂级数在收敛域内确定了一个和函 数,因此我们就有可能利用幂级数来表示函 数。如果一个函数已经表示为幂级数,那末 该函数的导数、积分等问题就迎刃而解
文件格式: PPT大小: 376.5KB页数: 25
习题课常数项级数审敛 一、主要内容 1、常数项级数 常数项级数收敛(发散) lim存在(不存在)
文件格式: PPT大小: 850.5KB页数: 29
前面两节我们讨论了一般项是非负整数次幂的 幂函数的函数项级级数,给出了幂级数 的收敛半径和收敛域的求法,讨论了函数展开为 幂级数的条件及函数展开为幂级数的直接展开法、 间接展开法
文件格式: PPT大小: 709.5KB页数: 42










