一、基本QR方法 60年代出现的QR算法是目前计算中小型矩阵的全部特征值与 特征向量的最有效方法。实矩阵、非奇异。 理论依据:任一非奇异实矩阵都可分解成一个正交矩阵Q和 一个上三角矩阵R的乘积,而且当R的对角元符号取定时,分解是 唯一的
文件格式: PPT大小: 171KB页数: 26
工程实践中有多种振动问题,如桥梁或建筑物的振 动,机械机件、飞机机翼的振动,及一些稳定性分析和 相关分析可转化为求矩阵特征值与特征向量的问题 1已知A=(an)mn,求代数方程q(1)=det(I-A)=0 的根。φ(λ)称为舶特征多项式,一般有n个零点,称 为的特征值 2设为伯的特征值,求相应的齐次方程(4/-A)x=0 的非零解(即求Ax=λx的非零解),x称为矩阵A对应 于孔的特征向量
文件格式: PPT大小: 283.5KB页数: 34
直接法:经过有限次运算后可求得方程组精确解的方 法(不计舍入误差!) 迭代法:从解的某个近似值出发,通过构造一个无穷序 列去逼近精确解的方法。(一般有限步内得不到精确解) 直接法比较适用于中小型方程组。对高阶方程组, 既使系数矩阵是稀疏的,但在运算中很难保持稀疏性, 因而有存储量大,程序复杂等不足
文件格式: PPT大小: 253.5KB页数: 42
工程实际计算中,线性方程组的系数矩阵常常具有对 称正定性,即其各阶顺序主子式及全部特征值均大于零 矩阵的这一特性使它的三角分解也有更简单的形式,从而 导出一些特殊的解法,如平方根法与改进的平方根法 定理:设A是对称正定矩阵,则存在唯一的非 奇异下三角阵L,使得 A=LL 且L的对角元素皆为正
文件格式: PPT大小: 246.5KB页数: 32
如果线性方程组的系数行列式不为零,即det(A)≠0, 则该方程组有唯一解。由克莱姆(cramer)法则,其解为 det() (i=1,2,…n det(A) 这种方法需要计算n+1个n阶行列式并作n次除法,而每个 n阶行列式计算需作(n-1)n!次乘法,计算量十分惊人
文件格式: PPT大小: 341.5KB页数: 34
实际中,很多问题的数学模型都是微分方程。我们可以研究它们的一些 性质。但是,只有极少数特殊的方程有解析解。对于绝大部分的微分方程是 没有解析解的。 常微分方程作为微分方程的基本类型之一,在自然界与工程界有很广泛 的应用。很多问题的数学表述都可以归结为常微分方程的定解问题
文件格式: PPT大小: 541KB页数: 37
很多工程计算中,会遇到特征值和特征向量的计算,如:机械、结构或电磁振 动中的固有值问题;物理学中的各种临界值等。这些特征值的计算往往意义重大
文件格式: PPT大小: 351KB页数: 30
直接法得到的解是理论上准确的,但是我们可以看得出,它们的计算量都是n3 数量级,存储量为η2量级,这在n比较小的时候还比较合适(n<400),但是对于现 在的很多实际问题,往往要我们求解很大的n的矩阵,而且这些矩阵往往是系数矩阵 就是这些矩阵含有大量的0元素。对于这类的矩阵,在用直接法时就会耗费大量的时 间和存储单元。因此我们有必要引入一类新的方法:迭代法
文件格式: PPT大小: 310KB页数: 28
实际中,存在大量的解线性方程组的问题。很多数值方法到最后也会涉及到线性方程组的求解问题:如样条插值的 M和m关系式,曲线拟合的法方程,方程组的 Newton迭代等问题
文件格式: PPT大小: 505KB页数: 40
非线性科学是当今科学发展的一个重要研究方向,而非线性方程的求根也成了 个不可缺的内容。但是,非线性方程的求根非常复杂。 通常非线性方程的根的情况非常复杂:
文件格式: PPT大小: 336KB页数: 20










