泛函分析是近代数学中一重要分支,起源于古典分析,它将线性代数、线性常与偏微分方程、积分方程、变分学、逼近论中具有共同特征的问题进行抽象概括,且综合了代数拓扑和分析结构于一体。泛函分析的基本概念建立于本世纪初,成熟于50年代,其内容已渗透到逼近论、偏微分方程、概率论、最优化理论等各方面。近十几年来泛函分析在工程技术方面的应用日益广泛和有效国内外技术科学的论文、专著常引用泛函分析的内容和方法,获取学位要通过泛函分析考试,工科院校的本科或研究生要开设泛函分析课程,因而我国迫切需要适合工科院校和科技工作者的泛函分析入门书。 第一章 度量空间 第二章 赋范空间、巴拿赫( Banach)空间 第三章 内积空间、希耳伯特(Hilbert)空间 第四章 赋范和Banach空间的基本定理 第五章 Banach不动点定理、逼近理论 第六章 赋范空间线性算子的谱论 第七章 赋范空间上的紧线性算子及其谱
文件格式: PDF大小: 10.38MB页数: 547
1.两直角坐标系O;m,m2]与[O;m,2有公共原点.在原坐标系[O;m,m2]下,新坐标系的基向量为
文件格式: PDF大小: 350.43KB页数: 16
1.试分别用正等测投影及正二等测投影画出边长等于2,3,4的长方体以及正四面体
文件格式: PDF大小: 415.23KB页数: 21
1.按通常数的加法与乘法,下列集合是否构成实数域R上的线性空间? (1)整数集Z:(2)有理数集Q;(3)实数集R;(4)复数集C
文件格式: PDF大小: 370.4KB页数: 22
1.设向量β可由向量组a1,a2,……,as线性表示,但不能由a1,a2,…,a-1线性表示证明:向量
文件格式: PDF大小: 368.72KB页数: 25










