List of Examples and Exercises Table of Input Files The following table lists the input files corresponding to the various examples and exercises in this work.These files are located in the subdirectories quick,examples and exercise of the explore subdirectory of the Gaussian directory tree.Files have the extension .com on UNIX and VMS systems,and .GJF on Windows systems. The final column of the table lists the CPU time required for running the job on our reference computer system,a DEC AlphaServer 21005/250;all jobs were run usinga single processor.For multi-step jobs,the timing figure indicates the total CPU time for all job steps.Filenames and CPU times for long jobs (>30 minutes)are in boldface type,and filenames and CPU times for very long jobs(>2 hours)are in boldface red type. Corresponding CPU Time Input File Example/Exercise Description of Job (hrs:mins:secs:) Quick Start qs Exercise QS.1 Water single point energy 0:00:08.2 water.pdb Exercise QS.2 Converting a PDB file 0:00:08.2 Chapter 2 e201 Example 2.1 Formaldehyde energy 0:00:09.1 e202 Example 2.2 Methane NMR properties 000:20.8 2_01 Exercise 2.1 Propene energy 0:00:15.1 2_02a Exercise 2.2 Dichloro-difluoro-ethane(RR form) 0:01:06.4 202b Exercise 2.2 Dichloro-difluoro-ethane(SS form) 0:01:06.8 202c Exercise 2.2 Dichloro-difluoro-ethane (meso form) 001:04.9 203 Exercise 2.3 Acetone energy 000:26.8 204 Exercise 2.4 Ethylene energy 00009.7 2_05a Exercise 2.5 Butane NMR properties 0:03:01.8 2.05b Exercise 2.5 Trans 2-butene NMR properties 002:45.2 2_05c Exercise 2.5 2-Butyne NMR properties 002:45.6 206 Exercise 2.6 C60 energy 0:44:31.9 207 Exercise 2.7 Conventional vs.direct CPU usage study 1:26:46.8 208a Exercise 2.8 Stability of oxygen 0:00:36.8 208b Exercise 2.8 Stability of ozone 0:05:03.5 Chapter 3 e3_01 Example 3.1 Ethylene geometry optimization 0:00:44.2 e3_02 Example 3.2 Fluoroethylene optimization 0:01:56.4 e3_03 Example 3.3 H3CO-H2COH TS opt.(QST2) 0:02:07.2 301o Exercise 3.1 Propene optimization(1800) 0:0201.8 301b Exercise 3.1 Propene optimization(00) 0:01:57.7 xiv Exploring Chemistry with Electronic Structure Methods
List ofExamples and Exercises Table of Input Files The following table lists the input files corresponding to the various examples and exercises in this work. These files are located in the subdirectories quick, examples ar.d exercise of the explore subdirectory of the Gaussian directory tree. Files have the extension .com on UNIX and VMS systems, and .GJF on Windows systems. The final column of the table lists the CPU time required for running the job on our reference computer system, a DEC AlphaServer 21005 / 25°; all jobs were run using a single processor. For multi-step jobs, the timing figure indicates the total CPU time for all job steps. Filenames and CPU times for long jobs (> 30 minutes) are in boldface type, and filenames and CPU times for very long jobs (> 2 hours) are in boldface red type. Corresponding CPU Time Input File Example/Exercise Description ofJob (hrs:mins:secs:) Quick Start qs Exercise QS.l Water single point energy 0:00:08.2 water.pdb Exercise QS.2 Converting a PDB file 0:00:08.2 Chapter 2 e2_01 Example 2.1 Formaldehyde energy 0:00:09.1 e2_02 Example 2.2 Methane NMR properties 0:00:20.8 2_01 Exercise 2.1 Propene energy 0:00:15.1 2_02a Exercise 2.2 Dichloro-difluoro-ethane (RR form) 0:01:06.4 2_02b Exercise 2.2 Dichloro-difluoro-ethane (SS form) 0:01:06.8 2_02c Exercise 2.2 Dichloro-difluoro-ethane (meso form) 0:01:04.9 2_03 Exercise 2.3 Acetone energy 0:00:26.8 2_04 Exercise 2.4 Ethylene energy 0:00:09.7 2_050 Exercise 2.5 Butane NMR properties 0:03:01.8 2_05b Exercise 2.5 Trans 2-hutene NMR properties 0:02:45.2 2_05c Exercise 2.5 2-Butyne NMR properties 0:02:45.6 2_06 Exercise 2.6 C60 energy 0:44:31.9 2_07 Exercise 2.7 Conventional vs.direct CPU usage study 1:26:46.8 2_080 Exercise 2.8 Stability of oxygen 0:00:36.8 2_08b Exercise 2.8 Stability of ozone 0:05:03.5 Chapter 3 e3_01 Example 3.1 Ethylene geometry optimization 0:00:44.2 e3_02 Example 3.2 Fluoroethylene optimization 0:01:56.4 . e3_03 Example 3.3 H3CO--+H2COH TS opt. (QST2) 0:02:07.2 3_010 Exercise 3.1 Propene optimization (1800 ) 0:02:01.8 3_01b Exercise 3.1 Propene optimization (00 ) 0:01:57.7 xiv Exploring Chemistry with Electronic Structure Methods
Table of Input Files Corresponding CPU Time Input File Example/Exercise Description of Job (hrs:mins:secs:) Chapter 3 302a Exercise 3.2 Vinyl alcohol optimization (0) 0:02:12.4 3_02b6 Exercise 3.2 Vinyl alcohol optimization(1800) 0:01:48.2 302e Exercise 3.2 Acetaldehyde optimization 0:01:40.2 303 Exercise 3.3 Planar vinyl amine optimization 0:01:56.1 304 Exercise 3.4 Chromium hexacarbonyl optimization 0:17:54.5 305a Exercise 3.5 Benzene optimization NMR props. 1:00:06.4 3_05b Exercise 3.5 TMS optimization NMP properties 1:45:01.8 306a Exercise 3.6 C600 optimizations (PM3) 0:16:32.0 306b Exercise 3.6 C60O optimizations(HF) 11:14:52.2 3_07 Exercise 3.7 SiH2 H2 SiH TS optimization 0:02:23.2 308 Exercise 3.8 Bicyclo[2.2.2]octane optimizations with 1:53:28.5 different coordinate systems Chapter 4 e4_01 Example 4.1 Formaldehyde frequencies 0:00:43.4 e402a Example 4.2 Trans 1-fluoropropene(0)fregs. 0:0903.9 e402b Example 4.2 Trans 1-fluoropropene(1800)fregs. 0:09:29.1 e4_02c Example 4.2 Cis 1-fluoropropene(00)freqs. 0:11:19.7 e4.02d Example 4.2 Cis-Trans TS for 1-fluoropropene 0:20:28.9 4_01a Exercise 4.1 Vinyl alcohol (1800)frequencies 0:02:37.8 4_01b Exercise 4.1 Vinyl alcohol(0)frequencies 0:02:39.0 4_02a Exercise 4.2 Vinyl amine(planar)frequencies 0:02:44.7 402b Exercise 4.2 Vinyl amine TS opt.frequencies 0:03:21.3 4_03a Exercise 4.3 Ethylene frequencies 00041.1 403b Exercise 4.3 Fluoroethylene frequencies 0:01:54.1 4_03c Exercise 4.3 Propene frequencies 002:53.7 4_04a Exercise 4.4 Acetaldehydefrequencies 0:02:12.8 404b Exercise 4.4 Acrolein frequencies 0:05:18.6 4_04c Exercise 4.4 Formamide frequencies 0:01:54.8 404d Exercise 4.4 Acetone frequencies 0:07:16.9 4_04e Exercise 4.4 Acetyl chloride frequencies 0:06:03.3 404f Exercise 4.4 Methyl acetate frequencies 0:17:38.1 405a Exercise 4.5 Strained hydrocarbons frequencies 0:55:19.1 405b Exercise 4.5 Larger strained hydrocarbons fregs. 2:01:23.1 406a Exercise 4.6 3-Fluoropropene optimization 0:14:53.9 Exploring Chemistry with Electronic Structure Methods v
Table ofInput Files Corresponding CPU Time Input File Example/Exercise Description ofJob (hrs:mins:secs:) Chapter 3 3_020 Exercise 3.2 Vinyl alcohol optimization (00 ) 0:02:12.4 3_02b Exercise 3.2 Vinyl alcohol optimization (1800 ) 0:01:48.2 3_02e Exercise 3.2 Acetaldehyde optimization 0:01:40.2 3_03 Exercise 3.3 Planar vinyl amine optimization 0:01:56.1 3_04 Exercise 3.4 Chromium hexacarbonyl optimization 0: 17:54.5 3_05a Exercise 3.5 Benzene optimization & NMR props. 1:00:06.4 3_05b Exercise 3.5 TMS optimization & NMP properties 1:45:01.8 3_060 Exercise 3.6 C600 optimizations (PM3) 0:16:32.0 3_06b Exercise 3.6 C600 optimizations (HF) II :14:52.2 3_07 Exercise 3.7 5iH2 + H2 5iH4 TS optimization 0:02:23.2 3_08 Exercise 3.8 Bicyclo [2.2.2] octane optimizations with 1:53:28.5 different coordinate systems Chapler4 e4_01 Example 4.1 Formaldehyde frequencies 0:00:43.4 e4_020 Example 4.2 Trans I-fluoropropene (00 ) freqs. 0:09:03.9 e4_02b Example 4.2 Trans I-fluoropropene (1800 ) freqs. 0:09:29.1 e4_02e Example 4.2 Cis 1-fluoropropene (00 ) freqs. 0:11:19.7 e4_02d Example 4.2 Cis-Trans TS for I-fluoropropene 0:20:28.9 4_010 Exercise 4.1 Vinyl alcohol (1800 ) frequencies 0:02:37.8 4_01b Exercise 4.1 Vinyl alcohol (00 ) frequencies 0:02:39.0 4_020 Exercise 4.2 Vinyl amine (planar) frequencies 0:02:44.7 4_02b Exercise 4.2 Vinyl amine TS opt. + frequencies 0:03:21.3 4_030 Exercise 4.3 Ethylene frequencies 0:00:41.1 4_03b Exercise 4.3 Fluoroethylene frequencies 0:01:54.1 4_03e Exercise 4.3 Propene frequencies 0:02:53.7 4_040 Exercise 4.4 Acetaldehydefrequencies 0:02:12.8 4_04b Exercise 4.4 Acrolein frequencies 0:05:18.6 4_04e Exercise 4.4 Formamide frequencies 0:01:54.8 4_04d Exercise 4.4 Acetone frequencies 0:07:16.9 4_0Ae Exercise 4.4 Acetyl chloride frequencies 0:06:03.3 4_04f Exercise 4.4 Methyl acetate frequencies 0:17:38.1 4_050 Exercise 4.5 Strained hydrocarbons frequencies 0:55:19.1 4_05b Exercise 4.5 Larger strained hydrocarbons freqs. 2:01 :23.1 4_060 Exercise 4.6 3-Fluoropropene optimization 0:14:53.9 ExploringChemistry with Electronic Structure Methods
List of Examples and Exercises Corresponding CPU Time Input File Example/Exercise Description of Job (hrs:mins:5ccs:) Chapter 4 4_066 Exercise 4.6 CH,F-CH=CH2+>CHF=CH-CH3 TS 0:2025.7 Chapter 5 e5_01 Example 5.1 Methanol vs.methoxide anion 0:01:12.2 ●502 Example 5.2 Optimization of PO 0:42:36.0 5_01 Exercise 5.1 Basis set effects on H-F bond length 0:1502.0 5_02 Exercise 5.2 M(CO)6 optimizations (LANL2DZ) 1:09:30.5 503a Exercise 5.3 Benzene NMR properties by basis set 0:44:37.7 5_036 Exercise 5.3 TMS NMR properties by basis set 1:1:06.8 5_04 Exercise 5.4 N,N-Dimethyl-formamide opt.freq. 3:24:00.7 5_05 Exercise 5.5 Basis set structure(via methanol) 0:00:15.0 506 Exercise 5.6 6-31G**vs.6-31Gtt basis sets 0:04:25.3 Chapter 6 e601 Example 6.1 TPP AMI molecular orbitals 0:11:40.3 e6_02 Example 6.2 HF Dimer semi-empirical study 0:05:12.8 e6_03 Example 6.3 HF bond energy 0:05:07.5 e6_04 Example 6.4 Ozone optimizations 3:30:31.6 e6_05a Example 6.5 CO2 atomization energy:HF 002:00.7 e6_05h Example 6.5 CO2 atomization energy:SVWN 0:03:44.4 e6_05c Example 6.5 CO2 atomization energy:SVWN5 0:03:47.8 e6.05d Example 6.5 CO2 atomization energy:BLYP 0:09:01.9 e6_05e Example 6.5 CO2 atomization energy:B3LYP 0:09:34.2 e6_05f Example 6.5 CO2 atomization energy:B3PW91 0:09:35.6 e6.05g Example 6.5 CO2 atomization energy:MP2 0:05:25.7 e6_06 Example 6.6 F3frequencies 0:30:16.1 6_01a Exercise 6.1 Isobutane and n-butane AMl opts. 0:00:08.0 6_01b Exercise 6.1 Isobutane and n-butane PM3 opts. 0:00:08.1 601c Exercise 6.1 Isobutane and n-butane HF opts. 0:06:39.8 602a Exercise 6.2 N-butane (anticlinal)AMI opt. 0:00:20.1 6_02b Exercise 6.2 N-butane(anticlinal)HF opt. 0:08:25.6 6_03 Exercise 6.3 Malonaldehyde optimizations 5:46:30.4 6_.03x Exercise 6.3 Malonaldehyde optimization(B3LYP) 0:54:13.9 6_04 Exercise 6.4 FOOF optimizations 0:34:49.7 605a Exercise 6.5 Acetaldehyde QCISD(T)energy 0:11:22.6 6056 Exercise 6.5 Ethylene oxide QCISD(T)energy 0:13:04.9 6_06a Exercise 6.6 Cyano radical spin polarization 1:35:34.7 Exploring Chemistry with Electronic Structure Methods
List ofExamples and Exercises
Table of Input Files Corresponding CPU Time Input File Example/Exercise Description of Job (hrs:mins:secs: Chapter 6 6_066 Exercise 6.6 Allyl radical spin polarization 0:06:47.9 6_06c Exercise 6.6 Be-sub.allyl radical spin polarization 0:20:24.0 606d Exercise 6.6 Mg-sub.allyl radical spin polarization 0:32:06.5 606e Exercise 6.6 S-sub.allyl radical spinpolarization 0:17:41.5 6_07a Exercise 6.7 K+F3 frequencies 1:09:02.4 6.07b Exercise 6.7 Na+Ffrequencies 202:50.1 6.07c Exercise 6.7 CsF3frequencies 1:14:51.4 608 Exercise 6.8 HNCN radical hyperfine coupling 0:36:36.5 609 Exercise 6.9 Destruction of ozone by atomic chlorine 15:16:41.3 Chapter 7 e701 Example 7.1 Atomization energy of PH2 0:05:57.1 e702 Example 7.2 Electron affinity of PH2 0:03:55.6 e7_03 Example 7.3 Ionization potential of PH2 0:03:48.9 e704 Example 7.4 Proton affinity of PH3 0:16:55.9 e7_05 Example 7.5 G2 proton affinity of PH3 0:13:49.1 e706 Example 7.6 CBS-4 proton affinity of PH3 0:17:45.4 701a Exercise 7.1 Atomization energy of water 0:03:23.9 701b Exercise 7.1 Ionization potential of water 0:0:39.3 701c Exercise 7.1 Electron affinity of OH 0:02:54.9 701d Exercise 7.1 Proton affinity of water 001:21.8 702a Exercise 7.2 Chlorine destruction of ozone(G2) 1:42:52.6 702% Exercise 7.2 Chlorine destruction of ozone(CBS-4) 0:18:29.4 702c Exercise 7.2 Chlorine destruction of ozone(CBS-Q) 0:56:24.4 Chapter 8 e8_01a Example 8.1 Electron density of nit.chlorobenzene 0:18:44.6 e801b Example 8.1 Electron density of nit.nitrobenzene 0:22:45.6 e8.02 Example 8.2 H3O+hydration reaction 0:0807.8 e8_03 Example 8.3 H2+CO←4H2 CO PES 008:24.3 e8_04 Example 8.4 HCO←→trans HCOH PES 0:1058.5 e8_05 Example 8.5 Isodesmic reaction 0:37:53.7 e806 Example 8.6 CO2 atom.energy via isodesmic rx. 0:06:07.2 e807 Example 8.7 Ethane and SiHa heats of formation 3:25:03.0 801a Exercise 8.1 Li hydration reaction 0:09:51.5 801b Exercise 8.1 Water calcs.for hydration reactions 0:03:28.4 8_01c Exercise 8.1 Water dimer hydration reaction 0:41:45.9 Exploring Chemistry with Electronic Structure Methods 墙
Table ofInput Files Corresponding CPU Time Input File Example/Exercise Description ofJob (hrs:mins:secs:) Chapter 6 6_06b Exercise 6.6 Allyl radical spin polarization 0:06:47.9 6_06c Exercise 6.6 Be-sub. allyl radical spin polarization 0:20:24.0 6_06d Exercise 6.6 Mg-sub. allyl radical spin polarization 0:32:06.5 6~06e Exercise 6.6 S-sub. allyl radical spinpolarization 0:17:41.5 6_070 Exercise 6.7 K+P3- frequencies 1:09:02.4 6_07b Exercise 6.7 Na+P3- frequencies 2:02:50.1 6_07e Exercise 6.7 Cs+p3- frequencies 1:14:51.4 6_08 Exercise 6.8 HNCN radical hyperfine coupling 0:36:36.5 6_09 Exercise 6.9 Destruction of ozone by atomic chlorine 15:16:41.3 Chapter 7 e7_01 Example 7.1 Atomization energy ofPH2 0:05:57.1 e7_02 Example 7.2 Electron affinity ofPH2 0:03:55.6 e7_03 Example 7.3 Ionization potential ofPH2 0:03:48.9 e7_04 Example 7.4 Proton affinity of PH3 0:16:55.9 e7_05 Example 7.5 G2 proton affinity ofPH3 0:13:49.1 e7_06 Example 7.6 CBS-4 proton affinity ofPH3 0:17:45.4 7_010 Exercise 7.1 Atomization energy of water 0:03:23.9 7_01b Exercise 7.1 Ionization potential ofwater 0:01:39.3 7_01c Exercise 7.1 Electron affinity of OH 0:02:54.9 7_01d Exercise 7.1 Proton affinity ofwater 0:01:21.8 7_020 Exercise 7.2 Chlorine destruction of ozone (G2) 1:42:52.6 7_02b Exercise 7.2 Chlorine destruction of ozone (CBS-4) 0:18:29.4 7_02e Exercise 7.2 Chlorine destruction of ozone (CBS-Q) 0:56:24.4 Chapter 8 e8_010 Example 8.1 Electron density of nit. chlorobenzene 0:18:44.6 e8_01b Example 8.1 Electron density of nit. nitrobenzene 0:22:45.6 e8_02 Example 8.2 H30+ hydration reaction 0:08:07.8 e8_03 Example 8.3 H 2 +CO H H2CO PES 0:08:24.3 e8_04 Example 8.4 H2CO H trans HCOH PES 0:10:58.5 e8_0S Example 8.5 Isodesmic reaction 0:37:53.7 e8_06 Example 8.6 CO2 atom. energy via isodesmic rx. 0:06:07.2 e8_07 Example 8.7 Ethane and SiH4 heats offormation 3:25:03.0 8_010 Exercise 8.1 Li hydration reaction 0:09:51.5 8_01b Exercise 8.1 Water cales. for hydration reactions 0:03:28.4 8_0le Exercise 8.1 Water dimer hydration reaction 0:41:45.9 Exploring Chemistry with Electronic Structure Methods
List of Examples and Exercises Corresponding CPU Time Input File Example/Exercise Description of Job (hrs:mins:secs:) Chapter 8 8_02a Exercise 8.2 CH PES scan 0:08:44.9 8_02b Exercise 8.2 CH4 PES scan 2:14:42.9 803 Exercise 8.3 HOCH cis-trans TS 0:19:54.8 8_04 Exercises 8.4 8.5 Allyl cation population analyses 0:01:12.4 806 Exercise 8.6 Allyl cation Atoms-in-Molecules analysis 055:44.7 8_07 Exercise 8.7 Si+SiHa PES IRC 1:09:21.0 808 Exercise 8.8 Isodesmic reactions 0:53:45.5 809a Exercise 8.9 Trifluoromethane(isodesmic reaction) 0:38:16.9 809% Exercise 8.9 Benzene(isodesmic reaction) 2:53:47.4 8_10 Exercise 8.10 SN2 reactions 0:39:26.4 Chapter 9 e9_01 Example 9.1 Ethylene excited states 0:00:21.1 e9_02 Example 9.2 Formaldehyde excited states 0:03:54.4 901 Exercise 9.1 Methylenecyclopropene excited states 0:03:47.4 902 Exercise 9.2 Formaldehyde excited state optimization 0:03:47.8 9_03 Exercise 9.3 Acrolein excited state optimization 0:22:53.5 904a Exercise 9.4 Benzene excited states(6-31G*) 0:01:24.2 9046 Exercise 9.4 Benzene excited states(6-31+G*) 0:03:24.2 905a Exercise 9.5 Acrolein orbitals for CAS 0:00:14.4 9.056 Exercise 9.5 CASSCF acrolein excitation energy 0:11:39.6 906a Exercise 9.6 Butadiene orbitals for CAS 0:00:10.8 9_06b Exercise 9.6 CASSCF(4,4)butadiene ground state 0:35:49.3 9_06c Exercise 9.6 CASSCF(4,6)butadiene ground 'state 0:26:13.6 906d Exercise 9.6 Butadiene conical intersection 0:38:55.2 Chapter 10 e10_01a Example 10.1 Dichloroethane rotational barrier in 1:02:12.6 solution(IPCM model) e1001b Example 10.1 Dichloroethane rotational barrier in 0:21:43.3 solution(Onsager model) e1002a Example 10.2 Formaldehyde opt.volume calc. 0:01:21.7 e10_02b Example 10.2 Formaldehyde in acetonitrile(SCIPCM) 0:56:32.5 e1002c Example 10.2 Formaldehyde in acetonitrile(Onsager) 0:01:49.6 10_01a Exercise 10.1 Dichloroethane in solution (IPCM) 2:52:17.1 1001b Exercise 10.1 Dichloroethane in solution(HF Onsager) 001:13.5 10_01c Exercise 10.1 Dichloroethane in solution(MP2 Onsager) 0:42:53.6 xviii Exploring Chemistry with Electronic Structure Methods
I)st ofExamples and Exercises Corresponding CPU Time Input File Example/Exercise Description ofJob (hrs:mins:secs:) Chap.r8 8_02a Exercise 8.2 CH PES scan 0:08:44.9 8_02b Exercise 8.2 CH4 PES scan 2:14:42.9 8_03 Exercise 8.3 HOCH cis-trans TS 0:19:54.8 8_04 Exercises 8.4 & 8.5 Allyl cation population analyses 0:01:12.4 8_06 Exercise 8.6 Allyl cation Atoms-in-Molecules analysis 0:55:44.7 8_07 Exercise 8.7 Si+ + SiH4 PES IRC 1:09:21.0 8_08 Exercise 8.8 Isodesmic reactions 0:53:45.5 8_090 Exercise 8.9 Trifluoromethane (isodesrnic reaction) 0:38:16.9 8_09b Exercise 8.9 Benzene (isodesmic reaction) 2:53:47.4 8_10 Exercise 8.10 SN2 reactions 0:39:26.4 Chapter 9 e9_01 Example 9.1 Ethylene excited states 0:00:21.1 e9_02 Example 9.2 Formaldehyde excited states 0:03:54.4 9_01 Exercise 9.1 Methylenecyclopropene excited states 0:03:47.4 9_02 Exercise 9.2 Formaldehyde excited state optimization 0:03:47.8 9_03 Exercise 9.3 Acrolein excited state optimization 0:22:53.5 9_040 Exercise 9.4 Benzene excited states (6-31G*) 0:01:24.2 9_04b Exercise 9.4 Benzene excited states (6-31 +G*) 0:03:24.2 9_05a Exercise 9.5 Acrolein orbitals for CAS 0:00:14.4 9_05b Exercise 9.5 CASSCF acrolein excitation energy 0:11:39.6 9_060 Exercise 9.6 Butadiene orbitals for CAS 0:00:10.8 9_06b Exercise 9.6 CASSCF(4,4) butadiene ground state 0:35:49.3 9_06c Exercise 9.6 CASSCF(4,6) butadiene ground 'state 0:26:13.6 9_06d Exercise 9.6 Butadiene conical intersection 0:38:55.2 Chapler 1O .IO_01a Example 10.1 Dichloroethane rotational barrier in 1:02:12.6 solution (IPCM model) e10_01b Example 10.1 Dkhloroethane rotational barrier in 0:21:43.3 solution (Onsager model) e10_02a Example 10.2 Formaldehyde opt. & volume calc. 0:01:21.7 elO_02b Example 10.2 Formaldehyde in acetonitrile (SCIPCM) 0:56:32.5 e10_02c Example 10.2 Formaldehyde in acetonitrile (Onsager) 0:01:49.6 10_01a Exercise 10.1 Dichloroethane in solution (IPCM) 2:52:17.1 10_01 b Exercise 10.1 Dkhloroethane in solution (HF Onsager) 0:01:13.5 1O_Ole Exercise 10.1 Dichloroethane in solution (MP2 Onsager) 0:42:53.6 xviii Exploring Chemistry with Electronic Structure Methods