School ofAutomation,XJTU如ci→0及2→00,则()-→0,并且[u(t)+y(t)]a(t)=-3[t,-t+(,-t)]。令V=沿视线的接近速度,并令y(t)=(t,-t)一视线角。则a=-3Vo,这便是导致完全拦截y(t)=0的“比例导航”。22CCAIYUANLI
School of Automation, XJTU © CAI YUANLI 22
School of Automation, XJTUy(t)1目标R=V(tg-t)图5.2.1拦裁和交会问题的符号规定23CAIYUANLI
School of Automation, XJTU © CAI YUANLI 23
School ofAutomation,XJTU如c及c两者均→α,则可得(t)→0,(t)-→0,而0(t)=-40()_.69(1)2gV40+-(i,-1)2或a=tf-t一这便是导致“完全”交会(t)=U(t)=0的一种变型的比例导航。24CCAIYUANLI
School of Automation, XJTU © CAI YUANLI 24
SchoolofAutomation,XJTU注意,如中的(t)和(t)用(t)-va及(t)y置换,则反馈律为a(t)=-A,(t)u(t)ua)-A,(t)y(t)-ya)。还请注意,u,y和a可用三维向量v、r和a置换,得出三维拦截(或交会)的解。在这种情况下,只有垂直于视线的两个分量能给予?角的提法。25CCAIYUANLI
School of Automation, XJTU © CAI YUANLI 25
School ofAutomation,XJTU例目标拦截的导引律。上述类型问题的一个特殊情况可以叙述如下:拦截者与目标的空间运动方程为i,=f,+ap,i,=Upi=/.+ae,i,=Ue(9.4.25)式中U一物体的三维速度向量,r一物体的三维位置向量f一加在此物体每单位质量上的重力,a=物体的控制加速度。26CCAIYUANLI
School of Automation, XJTU © CAI YUANLI 26