Inverse ties of Laplace transform Laplace变换(简称拉氏变换)是常用的一种积 分变换,在数学、物理及工程科学中有广泛 的应用 ●本节介绍 Laplace变换的定义及其基本性质
Laplace Transform Inverse Laplace Transform Definition of Laplace Transform Properties of Laplace Transform LaplaceC({¡.¼C)´~^«È ©C©3êÆ!Ôn9ó§Æ¥k2 A^ !0LaplaceC½Â9ÙÄ5 C. S. Wu 1où LaplaceC
讲授要点 O Laplace变换 定义 Laplace变换的基本性质 O Laplace变换的反演 Laplace变换像函数的必要条件 Laplace变换的反演 普遍反演公式
Laplace Transform Inverse Laplace Transform Definition of Laplace Transform Properties of Laplace Transform ùÇ: 1 LaplaceC ½Â LaplaceCÄ5 2 LaplaceCü LaplaceC¼ê7^ LaplaceCü ÊHüúª C. S. Wu 1où LaplaceC
Definition Laplace变换是一种积分变換,它把f(t)变换为 F(p) F(p)=/e-pt f(t)dt
Laplace Transform Inverse Laplace Transform Definition of Laplace Transform Properties of Laplace Transform Definition LaplaceC´«È©C§§rf(t)C F(p) F(p) = Z ∞ 0 e −ptf(t) dt ùpt´¢ê§p´Eê§p = s + iσ F(p)¡f(t)Laplaceª§{¡.¼ª e −pt´LaplaceCØ C. S. Wu 1où LaplaceC
Definition Laplace变换是一种积分变換,它把f(t)变换为 F(p) F(p)=/e-pt f(t)dt 这里的t是实数,p是复数,p=8+i F(P)称为f()的 Laplace换式,简称拉氏换式
Laplace Transform Inverse Laplace Transform Definition of Laplace Transform Properties of Laplace Transform Definition LaplaceC´«È©C§§rf(t)C F(p) F(p) = Z ∞ 0 e −ptf(t) dt ùpt´¢ê§p´Eê§p = s + iσ F(p)¡f(t)Laplaceª§{¡.¼ª e −pt´LaplaceCØ C. S. Wu 1où LaplaceC
Definition Laplace变换是一种积分变換,它把f(t)变换为 F(p) F(p)=/e-pt f(t)dt 这里的t是实数,P是复数,p=s+io F(p)称为∫()的 Laplace换式,简称拉氏换式 e是 Laplace变换的核
Laplace Transform Inverse Laplace Transform Definition of Laplace Transform Properties of Laplace Transform Definition LaplaceC´«È©C§§rf(t)C F(p) F(p) = Z ∞ 0 e −ptf(t) dt ùpt´¢ê§p´Eê§p = s + iσ F(p)¡f(t)Laplaceª§{¡.¼ª e −pt´LaplaceCØ C. S. Wu 1où LaplaceC