1911 初等模型
初 等 模 型
1911 1.公平的席位分配
1. 公平的席位分配
问三个系学生共200名(甲系100,乙系60,丙系黑 题4)代表会议共20席,按比例分配,三个系 现因学生转系,三系人数为103,63,34,问20席如何分配。 若增加为21席,又如何分配。 系别学生比例20席的分配21席的分配 比 人数(%)比例结果比例结果 对 例 丙 加甲1035151031010.815 系 惯乙6331.56366.6157公 例丙34 17034 3.570 3/平 吗 总和200100.020.0202100021
系别 学生 比例 20席的分配 人数 (%) 比例 结果 甲 103 51.5 乙 63 31.5 丙 34 17.0 总和 200 100.0 20.0 20 21席的分配 比例 结果 10.815 6.615 3.570 21.000 21 问 题 三个系学生共200名(甲系100,乙系60,丙系 40),代表会议共20席,按比例分配,三个系 分别为10,6,4席。 现因学生转系,三系人数为103, 63, 34, 问20席如何分配。 若增加为21席,又如何分配。 比 例 加 惯 例 对 丙 系 公 平 吗 系别 学生 比例 20席的分配 人数 (%) 比例 结果 甲 103 51.5 10.3 乙 63 31.5 6.3 丙 34 17.0 3.4 总和 200 100.0 20.0 20 系别 学生 比例 20席的分配 人数 (%) 比例 结果 甲 103 51.5 10.3 10 乙 63 31.5 6.3 6 丙 34 17.0 3.4 4 总和 200 100.0 20.0 20 21席的分配 比例 结果 10.815 11 6.615 7 3.570 3 21.000 21
1911 “公平”分配方衡量公平分配的数量指标 法 人数席位当n1/m1=p2m2时,分配公平 A方 B方1272若p/>p2m2,对A不公平 p1/n1-p2/n2~对A的绝对不公平度 p1=150,n1=10,p11=15p1=1050,n1=10,p1/m1=105 p2=100,n2=10,p2/2=10p2=1000,n2=10,p2/n2=100 /,=5 /n2=5 虽二者的绝对 但后者对A的不公平 不公平度相同 程度已大大降低
“公平”分配方 法 衡量公平分配的数量指标 人数 席位 A方 p1 n1 B方 p2 n2 当p1 /n1= p2 /n2 时,分配公平 p1 /n1– p2 /n2 ~ 对A的绝对不公平度 p1=150, n1=10, p1 /n1=15 p2=100, n2=10, p2 /n2=10 p1=1050, n1=10, p1 /n1=105 p2=1000, n2=10, p2 /n2=100 p1 /n1– p2 /n2=5 但后者对A的不公平 程度已大大降低! 虽二者的绝对 不公平度相同 若 p1 /n1> p2 /n2 ,对 A不公平 p1 /n1– p2 /n2=5
“公平”分配方将绝对度量改为相对度量 1911 若p1n1>p2/m2,定义 二P21B=(m1,n2)~对A的相对不公平度 pI 公平分配方案应 类似地定义rB(n1,n2) 使r4,rB尽量小 将一次性的席位分配转化为动态的席位分配,即 设A,B已分别有n1,n2席,若增加1席,问应分给A,还是B 不妨设分配开始时p1/mn1>p2n2,即对A不公平
公平分配方案应 使 rA , rB 尽量小 设A, B已分别有n1 , n2 席,若增加1席,问应分给A, 还是B 不妨设分配开始时 p1 /n1> p2 /n2 ,即对A不公平 ( , ) / / / 1 2 2 2 1 1 2 2 r n n p n p n p n = A − ~ 对A的相对不公平度 将绝对度量改为相对度量 类似地定义 rB(n1 ,n2 ) 将一次性的席位分配转化为动态的席位分配, 即 “公平”分配方 法 若 p1 /n1> p2 /n2 ,定义