己会?m 例计算: (1)(102);(2)(b5)5:(3)(a);(4)-(x2)y (5)(y2)3y;(6)2(a2)°-(a3)4 解:(1)(102)3=(10)23=10° (2)(b3)5=b33=b25 (3)(an)3 ≈h 3 s gon 2×m 2m (5)(y2)3·y=y3·y=y3y=y (6)2(a2)°-(a3)4 2 2×6 3×4 2a 12 12
例 计算: (6) 2( ) ( ) . 2 6 3 4 a − a (1) (102 ) 3 ;(2) (b 5 ) 5 (;3)(a n ) 3 ;(4) − (x 2 ) m ; (5) (y 2 ) 3 y; 2 3 6 = (10) =10 5 5 25 = b = b n n a a 3 3 = = m m x x 2 2 = − = − 2 3 6 7 = y y = y y = y y y 2 3 (5) ( ) 解: 2 3 (1) (10 ) 5 5 (2) (b ) 3 3 ) n ( )(a m (4) (x ) 2 − 2 6 3 4 (6) 2(a ) − (a ) 2 6 3 4 1 2 1 2 1 2 = 2a − a = 2a − a = a
Beartou.com 题堂习 进行幂的运算 判断题: 时要注意什么? (1)(am)”=am+n (X) (2)a2●a5=a10 (×) (3)( 2、10 20 () (4)[(2]=()0 (X) (5)(-b n+12 4b 2n+2 (√) (6)[(x+y)2]=(x+y) 10 ()
随堂练习 判断题: m n m n a a + ( ) = 2 5 10 a • a = a 2 10 20 (−a ) = a 2 3 6 ) 4 3 ) ] ( 4 3 [−( = 1 2 2 2 ( ) + + − = n n b b 2 5 10 [(x + y) ] = (x + y) (1) ( ) (2) ( ) (3) ( ) (4) ( ) (5) ( ) (6) ( ) 进行幂的运算 时要注意什么?