应力应交状态分析(Analysis of stress-state and strain-state)2.最大切应力(Maximumshearingstress)将αi和α+90°代入公式Osin2α+Txycos2αaC2Lmax1得到tmax和Tmin+tT2Tmin2Tor-Oxy比较tan2αo和 tan2αj =2Txyx-a1元元-4可见 tan 2αg =二2α, = 2α +十α= αo2'tan2αi
(Analysis of stress-state and strain-state) 2.最大切应力(Maximum shearing stress ) 将1和 1+90°代入公式 2 2 2 sin cos x y x y + − = 得到 max和min 2 2 2 xy x y + − = ( ) min max xy x y 2 2 1 − tan = x y xy − = − 2 2 0 比较 tan 和 可见 1 0 2 1 2 tan tan = − 4 π , 2 π 2 2 1 = 0 + 1 = 0 +
应力应交状态分析(Analysis of stress-stateand strain-state)例题4简支梁如图所示.已知m-m截面上A点的弯曲正应力和切应力分别为α=-70MPa,T=50MPa.确定A点的主应力及主平面的方位。mm解:把从A点处截取的单元体放大如图O,=-70,O,=0,Tx,=50
(Analysis of stress-state and strain-state) 例题4 简支梁如图所示.已知 m-m 截面上A点的弯曲正应力和 切应力分别为 =-70MPa, =50MPa.确定A点的主应力及主平面 的方位. A m m a l A 解: 把从A点处截取的单元体放大如图 x = −70, y = 0, xy = 50
应力应交状态分析(Analysis of stress-state and strain-state2t2×50xy1.429tan2αo=(-70) - 0a.00301αo27.5aXαo =- 62.5°1因为Q<,,所以α=27.5°与omm对应26MPa十Omax上土22-96MPamin01=26MPa,02=0,03=-96MPa
(Analysis of stress-state and strain-state) 因为 x < y ,所以 0= 27.5°与 min对应 1.429 ( 70) 0 2 2 50 tan2 0 = − − = − − = − x y x y − = 62 5 27 5 0 . . A x 0 − + = − + = MPa MPa ( ) min max 96 26 2 2 2 2 x y x y x y 1 = 26MPa, 2 = 0, 3 = −96MPa 1 1 3 3
应力应交状态分析(Analysis of stress-state and strain-state)例题5图示单元体,已知a.=-40MPa,a=60MPa,=-50MPa.试求e-f截面上的应力情况及主应力和主单元体的方位解:(1)求e-f截面上的应力30°+00x囍XVcos2α-t,sin2αOn-30°22-40+6040-60一cos(-60)-(-50)sin(-60°十22=-58.3MPa40-60o01sin2α+Tx,cos2α:sin(-60°) +L-30°22(-50)c0s(-60)=18.3MPa
(Analysis of stress-state and strain-state) x y xy 例题5 图示单元体,已知 x =-40MPa,y =60MPa,xy =-50MPa.试求e-f截面上的应力情 况及主应力和主单元体的方位. n 30° e 解 f :(1)求e-f 截面上的应力 58.3MPa cos( 60 ) ( 50)sin( 60 ) 2 40 60 2 40 60 cos 2 sin 2 2 2 3 0 = − − − − − − − + − + = − − + + = − x y x y x y ( 50)cos( 60 ) 18.3MPa sin( 60 ) 2 40 60 sin 2 cos 2 2 3 0 − − = − + − − + = − = − x y x y
应力应交状态分析(Analysis of stress-state and strain-state(2)求主应力和主单元体的方位9012t2× (-50)xy=-1tan2αo =03Txy- 40-60a0o- 22.5/22.545°do三2α=67.5°135°与0min对应因为g,<,所以α=-22.5°80.7MPaO0十0maxXV十22- 60.7MPaOminC, = 80.7MP92 = 0C3 =-60.7MPa
(Analysis of stress-state and strain-state) (2) 求主应力和主单元体的方位 1 40 60 2 2 50 2 0 = − − − − = − − = − ( ) tan x y x y − = 135 45 20 − = 67 5 22 5 0 . . 因为x < y ,所以0= -22.5°与 min对应 − + = − + = 60.7MPa 80.7MPa ) 2 ( 2 2 2 min max x x y x y 1 = 80.7MP 2 = 0 3 = −60.7MPa x y xy 22.5° 1 3