弯曲变形(Deflectionof Beams)S6-3用积分法求弯曲变形(Beamdeflectionbyintegration)一、微分方程的积分(Integrating thedifferential equation)M(x)WEI若为等截面直梁,其抗弯刚度E为一常量上式可改写成EIw"=M(x)
(Deflection of Beams) §6-3 用积分法求弯曲变形 (Beam deflection by integration ) 一、微分方程的积分 (Integrating the differential equation ) 若为等截面直梁, 其抗弯刚度EI为一常量上式可改写成 M x( ) w EI = EIw M x = ( )
弯曲变形Deflection of Beams1.积分一次得转角方程(The first integration gives the equation for the slope)EIw' = [ M(x)dx +C)2.再积分一次,得挠度方程(Integrating again gives the equation for the deflection)Elw = [[ M(x)dxdx + C,x + C,二、积分常数的确定(Evaluatingtheconstants of integration)1.边界条件(Boundaryconditions)2.连续条件(Continueconditions)
(Deflection of Beams) 2.再积分一次,得挠度方程 (Integrating again gives the equation for the deflection) 二、积分常数的确定 (Evaluating the constants of integration) 1.边界条件(Boundary conditions) 2.连续条件(Continue conditions) 1.积分一次得转角方程 (The first integration gives the equation for the slope) 1 EIw M x x C = + ( )d 1 2 EIw M x x x C x C = + + ( )d d
弯曲变形(Deflection of Beams在简支梁中,左右两铰支座处的B挠度WA和WB都等于0=0=0WW在悬臂梁中,固定端处的挠度WBARR和转角0都应等于0.BRREWA=00=0
(Deflection of Beams) A B 在简支梁中, 左右两铰支座处的 挠度 wA 和 wB 都等于0. 在悬臂梁中,固定端处的挠度 和转角 wA 都应等于0. A 0 wA = 0 wB = 0 wA = 0 A = A B
弯曲变形(Deflectionof Beams例题1图示一抗弯刚度为EI的悬臂梁,在自由端受一集中力F作用.试求梁的挠曲线方程和转角方程,并确定其最大挠度Wmax和最大转角maxHWBXW
(Deflection of Beams) l A B x F w 例题1 图示一抗弯刚度为EI 的悬臂梁, 在自由端受一集中力F 作用.试求梁的挠曲线方程和转角方程, 并确定其最大挠度 和最大转角 wmax max
弯曲变形(Deflection of Beams解:w(1)弯矩方程为ARRRRWBAx(1)M(x)=-F(l-x)x(2)挠曲线的近似微分方程为/EIw"=M(x)=-Fl+Fx(2)对挠曲线近似微分方程进行积分Fx?EIw'=-Flx++C(3)2FxFlxElw(4)二+Cix+C226
(Deflection of Beams) (1) 弯矩方程为 解: (2) 挠曲线的近似微分方程为 x l w A B x F 对挠曲线近似微分方程进行积分 M x F l x ( ) ( ) (1) = − − EIw M x Fl Fx = = − + ( ) (2) 2 1 (3) 2 Fx EIw Flx C = − + + 2 3 1 2 (4) 2 6 Flx Fx EIw x = − + + + C C