应力应交状态分析(Analysis of stress-state and strain-state)S7-7复杂应力状态的应变能密度(Strain-energy density in general stress-state)一、应变能密度的定义(Definition of Strain-energy density)应变能密度:物体在单位体积内所积蓄的应变能。又称为比能。二、应变能密度的计算公式(Calculation formula for Strain-energy density)1.单向应力状态下,物体内所积蓄的应变能密度为(Strain-energydensityforsimple stress-state)E出2E2
(Analysis of stress-state and strain-state) §7-7 复杂应力状态的应变能密度 (Strain-energy density in general stress-state) 一、应变能密度的定义 (Definition of Strain-energy density ) 二、应变能密度的计算公式 (Calculation formula for Strain-energy density) 1.单向应力状态下,物体内所积蓄的应变能密度为 (Strain-energy density for simple stress-state ) 2 2 ε 2 2 2 1 ε E E σ v = σε = = 应变能密度: 物体在单位体积内所积蓄的应变能。又称为比能
应力应交状态分析(Analysis of stress-state and strain-state2.三个主应力同时存在时,单元体的应变能密度为(Strain-energydensityforsimplestress-state)(018)+0282+0383)将广义胡克定律代入上式,经整理得[0 +02 +03-2u(002+0203 +030,)]S2E用v表示单元体体积改变相应的那部分应变能密度,称为体积改变能密度(thestrain-energydensitycorrespondingtothevolumetric)用表示与单元体形状改变相应的那部分应变能密度,称为畸变能密度(thestrain-energydensitycorrespondingtothedistortion.)应变能密度等于两部分之和V=V+V
(Analysis of stress-state and strain-state) 将广义胡克定律代入上式, 经整理得 用vd 表示与单元体形状改变相应的那部分应变能密度,称为 畸变能密度(the strain-energy density corresponding to the distortion.) 用vV表示单元体体积改变相应的那部分应变能密度,称为体 积改变能密度( the strain-energy density corresponding to the volumetric) 2.三个主应力同时存在时,单元体的应变能密度为 (Strain-energy density for simple stress-state ) = + + ( ) ε 1 1 2 2 3 3 1 2 v σ ε σ ε σ ε = + + − + + [ ( )] 222 ε 1 2 3 1 2 2 3 3 1 1 2 2 v σ σ σ σ σ σ E 应变能密度vε等于两部分之和 ε d = + V v v v
应力应交状态分析(Analysis of stress-state and strain-state)0m=(0i+ 02+ 03)/382代之以0m0ma03m(a)(b)图(a)所示单元体的三个主应力不相等,因而,变形后既发生体积改变也发生形状改变图(b)所示单元体的三个主应力相等,因而,变形后的形状与原来的形状相似,即只发生体积改变而无形状改变
(Analysis of stress-state and strain-state) (a) 1 2 3 (b) m m m=(1+ 2+ 3 )/3 代之以 m 图(a)所示单元体的三个主应力不相等, 因而, 变形后既 发生体积改变也发生形状改变. 图(b)所示单元体的三个主应力相等, 因而, 变形后的形状 与原来的形状相似, 即只发生体积改变而无形状改变
应力应交状态分析(Analysis of stress-state and strain-state)(v), =(Vv)b(v),=(V)a +(va)1-2μA(01+02+03) > (Vv)a=(Vv)E图b所示单元体的体积改变比能密度[(o"+o"+o" -2u(o"+o+o)](Vv)b=(V)b2E3(1-2μ)2Om2E1-2μQ+02+3)6E
(Analysis of stress-state and strain-state) ( ) ( ) [( ( )] ( ) ( ) = = + + − + + − = − == + + 2 2 2 2 2 2 b ε b m m m m m m 2m 2 1 2 3 1 2 2 3 1 2 2 1 2 6 Vv v σ σ σ μ σ σ σ E E E ( ) ( ) ( ) ε a a d a = + V v v v ( ) ( ) ε b b = V v v ( ) ( ) ( ) v v V V a b = 1 2 σ1 σ2 σ3 E + + − = 图 b 所示单元体的体积改变比能密度
应力应交状态分析(Analysis of stress-state and strain-statea单元体的比能为[0 +0, +0 -2μ(00, +0203 +030,)]a所示单元体的体积改变比能021-2μ0, +0, +0,)(Vv)a =(Vv)b =16E0空间应力状态下单元体的畸变能密度03V=V-V(a)1[(c, -6,) +(0 -0,) +(0; -01)6E
(Analysis of stress-state and strain-state) a单元体的比能为 a所示单元体的体积改变比能 = + + − + + [ ( )] 222 ε 1 2 3 1 2 2 3 3 1 1 2 2 v σ σ σ σ σ σ σ σ σ E ( ) ( ) ( ) − = = + + 2 a b 1 2 3 1 2 6 V V v v σ σ σ E 空间应力状态下单元体的畸变能密度 [( ) ( ) ( ) ] = − + = − + − + − d ε 2 2 2 1 2 2 3 3 1 1 6 V v v v σ σ σ σ σ σ E (a) 1 2 3