分布式一致性最优化的梯度算法与收敛分析

研究了多智能体网络中受集合约束的一致性最优化问题,提出了基于原始–对偶梯度的定步长分布式算法。算法中包括步长在内的参数会影响收敛性,需要先进行收敛分析,再根据收敛条件设置合适的参数。本文首先针对一般的定步长迭代格式,提出一种基于李雅普诺夫函数的收敛分析范式,它类似于一般微分方程关于李雅普诺夫稳定的分析方法。然后,针对所考虑的分布式梯度算法,构造了合适的李雅普诺夫函数,并根据收敛条件得到了算法参数设定范围,避免了繁冗复杂的分析论证。本文提出的理论与方法也为其他类型的分布式算法提供了一个框架性、系统性的论证方法。
文件格式:PDF,文件大小:962.04KB,售价:2.88元
文档详细内容(约8页)
点击进入文档下载页(PDF格式)
共8页,试读已结束,阅读完整版请下载
点击购买下载(PDF)

下载及服务说明

  • 购买前请先查看本文档预览页,确认内容后再进行支付;
  • 如遇文件无法下载、无法访问或其它任何问题,可发送电子邮件反馈,核实后将进行文件补发或退款等其它相关操作;
  • 邮箱:

文档浏览记录