2.一般式方程 由平面的点法式方程 A(x-x0)+B(y-y)+C(z-x0)=0 Ax+ By+C4-(Ao+ Byo + Czo0 D Ax+By+Cz+D=0平面的一般方程 法向量n={A,B,C}
2. 一般式方程 由平面的点法式方程 A(x − x0 ) + B( y − y0 ) + C(z − z0 ) = 0 Ax + By + Cz − (Ax0 + By0 + Cz0 ) = 0 = D Ax + By + Cz + D = 0 平面的一般方程 法向量 n = {A,B,C}.
平面一般方程的几种特殊情况: (1)D=0,平面通过坐标原点; (24=0,1D=0.平面通过轴 D≠0,平面平行于x轴; 类似地可讨论B=0,C=0情形 (3)A=B=0,平面平行于oy坐标面; 类似地可讨论A=C=0,B=C=0情形
平面一般方程的几种特殊情况: (1) D = 0, 平面通过坐标原点; (2) A = 0, = 0, 0, D D 平面通过 x 轴; 平面平行于 x 轴; (3) A = B = 0, 平面平行于 xoy 坐标面; 类似地可讨论 A = C = 0, B = C = 0 情形. 类似地可讨论 B = 0, C = 0 情形
例3设平面过原点及点(6,-3,2),且与平面 4x-y+2z=8垂直,求此平面方程 解设平面为Ax+B+Cz+D=0, 由平面过原点知D=0, 由平面过点(6,-3,2)知6A-3B+2C=0 元⊥{4-1,2},:4A4-B+2C=0 →A=B=--C 3 所求平面方程为2x+2y-3z=0
例 3 设平面过原点及点(6,−3,2),且与平面 4x − y + 2z = 8垂直,求此平面方程. 设平面为 Ax + By + Cz + D = 0, 由平面过原点知 D = 0, 由平面过点(6,−3,2)知 6A− 3B+ 2C = 0 n⊥{4,−1,2}, 4A− B+ 2C = 0 , 3 2 A = B = − C 所求平面方程为 2x + 2y − 3z = 0. 解
例4设平面与x,y,z三轴分别交于P(a,0,0)、 Q(0,b,0)、R(0,0,c)(其中a≠0,b≠0,C≠0) 求此平面方程 解设平面为Ax+B+Cz+D=0, a4+D=0 将三点坐标代入得{bB+D=0, cC+D=0 D →A= B= C=
例 4 设平面与x, y,z三轴分别交于P(a,0,0)、 Q(0,b,0)、R(0,0,c)(其中a 0,b 0,c 0), 求此平面方程. 设平面为 Ax + By + Cz + D = 0, 将三点坐标代入得 + = + = + = 0, 0, 0, cC D bB D aA D , a D A = − , b D B = − . c D C = − 解
D 将A 6,. D B DD 代入所设方程得 +y+=1平面的截距式方程 x轴上截距y轴上截距z轴上截距
, a D A = − , b D B = − , c D 将 C = − 代入所设方程得 + + = 1 c z b y a x 平面的截距式方程 x轴上截距 y轴上截距 z轴上截距