理论力学 第十
1
第十四章动能定理 §141力的功 §14-2动能 §14-3动能定理 §144功率·功率方程 §14-5势力场·势能·机械能守恒定理 §146动力学普遍定理及综合应用
2 §14–1 力的功 §14–2 动能 §14–3 动能定理 §14–4 功率 · 功率方程 §14–5 势力场 · 势能 · 机械能守恒定理 §14–6 动力学普遍定理及综合应用 第十四章 动能定理
学 与动量定理和动量矩定理用矢量法研究不同,动能定理用 能量法研究动力学问题。能量法不仅在机械运动的研究中有重 要的应用,而且是沟通机械运动和其它形式运动的桥梁。动能 定理建立了与运动有关的物理量一动能和作用力的物理量—功 之间的联系,这是一种能量传递的规律。 14-1力的功 力的功是力沿路程累积效应的度量。 常力的功 W=FS a Mi M M2 =F S 力的功是代数量。a<z时,正功;a=x时功为零;a>时负功。 单位:焦耳(J);1J=1Nm 3
3 与动量定理和动量矩定理用矢量法研究不同,动能定理用 能量法研究动力学问题。能量法不仅在机械运动的研究中有重 要的应用,而且是沟通机械运动和其它形式运动的桥梁。动能 定理建立了与运动有关的物理量—动能和作用力的物理量—功 之间的联系,这是一种能量传递的规律。 14-1 力的功 力的功是力沿路程累积效应的度量。 F S W FS = = cos 力的功是代数量。 时,正功; 时,功为零; 时,负功。 单位:焦耳(J); 2 2 = 2 1J=1N1m 一.常力的功
学 二,变力的功 元功:W= Cosas -fds F·c ar Xdx+dv+zd (F=Xi+yj+Zk, dr=dxi+dv +dck F dr= Xdx+Yay+zdz 力F在曲线路程MM,中作功为 M W=∫ Fcosads=∫Fs(自然形式表达式) MI M F dr (矢量式) =「Xx+hy+Zh(直角坐标表达式) M
4 二.变力的功 F ds = = F dr = Xdx +Ydy + Zdz (F = Xi +Yj + Zk ,dr = dxi + dyj + dzk F dr = Xdx+Ydy + Zdz) 力 F 在曲线路程 M1 M2 中作功为 = = 2 1 2 1 cos M M M M W F ds F ds (自然形式表达式) = 2 1 M M F dr (矢量式) = + + 2 1 M M Xdx Ydy Zdz (直角坐标表达式) 元功: W =Fcosds
学 合力的功 质点M受n个力F,2…F作用合力为R=∑F则合力R 的功 M W=」Rd=(F1+F2+…+Fn)d M1 M M =「Fc+「F+…+「F1=W+W2+…+Wn 即 W=∑W 在任一路程上,合力的功等于各分力功的代数和
5 三.合力的功 质点M 受n个力 作用合力为 则合力 的功 F F Fn , , , 1 2 R = Fi R W R dr F F F dr n M M M M = = + ++ ( ) 2 1 2 1 1 2 F dr F dr F dr M M n M M M M = + ++ 2 1 2 1 2 1 1 2 W W +Wn = + + 1 2 即 在任一路程上,合力的功等于各分力功的代数和。 W =Wi