B、节点分析下的s域元件模型导纳值 电阻:2(s)=V(s)0 R SengenI 电感:2(s) "() (0) S 电容:/(s)=sc(s)-cv(O
B、节点分析下的s域元件模型 导纳值 ( ) 1 : ( ) V s R I s 电阻 R = R I (s) R + VR (s) − (0) 1 ( ) 1 : ( ) L L L i s V s sL 电感 I s = + sL(0) 1 L i s I (s) L + − V (s) L : ( ) ( ) (0) c c c 电容 I s = scV s − cv I (s) c sc 1 (0) c cv + Vc (s) −
例:用域元件模型法求下图的v:() R (0)=-E E v(t 解:作出s域网络模型如图,有: E R (R+-)I(S) + 2E E SCI s1s/+⊥(s) S(r+ E SC (S)E 2E E Sc S S(scR+1) 2 EC ve(1)=[E-2Ee R Ju(t) bRc
例:用s域元件模型法求下图的 v (t) c 解:作出s域网络模型如图,有: + − E R c + − v (t) c + − s E R sc 1 + − s E − + − V (s) c I(s) ( ) ( ) ( ) s E s E I s sc R = − − + ) 1 ( 2 ( ) sc s R E I s + = s E s scR E s E sc I s V s c − + = − = ( 1) ( ) 2 ( ) ) 1 1 2 ( Rc s s E + = − v (t) [E 2Ee ]u(t) Rc t c − = − vc (0 _) = −E
三、从信号分解的角度看拉氏变换 1.用拉氏变换求取系统的零状态响应 r(t)=e(1)*h2(t) E(s)=e(t)esdt O R(S)=E(SH(S) r(t)= H (SE(Se d 27y7 O-oe e( t E(S) H(SECS) (乙) L H(S
1.用拉氏变换求取系统的零状态响应 H s E s e ds j r t R s E s H s E s e t e dt r t e t h t j j s t s t + − − − = = = = ( ) ( ) 2 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )* ( ) 0 三、从信号分解的角度看拉氏变换 L H(s) −1 L e(t) E(s) H(s)E(s) r(t)
◆系数的定 统零收态下,响泫的推氏变换局激励拉氏变换之比 叫作数,纪作H(S) H(S) R(S) E(S) 可以是电瓜传比、电传输比、转移阻抗、转导 約、策动点阻抗或导狗 电感的运算阻抗Z()=Ls(:(s)=sL()-Li(0 各元件方程式都写作:VFSS)S)YSd 电容的运算阻抗Z2(s)=-(∵V()=-l(s)+-v2(0 CS SC
◆系统函数的定义 • 系统零状态下,响应的拉氏变换与激励拉氏变换之比 叫作系统函数,记作H(s). • 可以是电压传输比、电流传输比、转移阻抗、转移导 纳、策动点阻抗或导纳 ( ) ( ) ( ) E s R s H s = ( ) ( ( ) ( ) (0 )) − L = L = L − LiL 电感的运算阻抗Z s Ls v s sLI s (0 )) 1 ( ) 1 ( ( ) 1 ( ) − c = c = c + c v s I s sc v s cs 电容的运算阻抗Z s 各元件方程式都写作:V(S)=Z(S)I(S) I(S)=Y(S)V(S) 0 0
例1:求右电路图中H()=2() V1(s) 解:列回路方程: d i1(t) +1)1(s)+12()--3(S)=V1()(1) 1(s)+(-+1+1)l2(s)+-13(s)=0(2) S (s)+-2(s)+(-+1)/(s)=0(3) 由(2)、(3)式有: 左式代入(1),解得 3s+1 s2+2s+1 2s2+2s+1 H(S)= I2(s)s2+2s+1 V1(s)s2+5s+1 2+2+
? ( ) ( ) 1: ( ) 1 2 = = V s I s 例 求右电路图中H s 解:列回路方程: − + + + = + + + + = + + − = 1) ( ) 0 2 ( ) ( 1 ( ) 1 ( ) 0 1 1 1) ( ) 1 ( ) ( ( ) ( ) 1 1) ( ) ( ) 1 ( 1 2 3 1 2 3 1 2 3 1 I s s I s s I s s I s s I s s I s I s V s s I s I s s + − ( ) 1 v t ( ) 1 i t ( ) 2 i t ( ) 3 i t 1 1 1 1 1 (1) (2) (3) 由(2)、(3)式有: + + + + = − + + + = ( ) 2 1 2 2 1 ( ) ( ) 2 1 3 1 ( ) 2 2 2 1 3 2 2 I s s s s s I s I s s s s I s 左式代入(1),解得: 5 1 2 1 ( ) ( ) ( ) 2 2 1 2 + + + + = = − s s s s V s I s H s