第四章因式分解 43公式法(1)
三 观察多项式x25,9x2y2,完成以下探究 间题,并与同伴交流 1.两个多项式的共同特征 多项式都只有閃项,项的符号相反,每,项都可 以写成平方的形式 2.尝试将x2-25,9x2y2写成两个因式的乘积: 2-25=x2-52=(x+5)(x5) 9x2y2=(3×)2-y2=(3x+y)(3xy 依据是:2b2=(+b(-b 形象地表示为:mA=(+▲)(一A
观察多项式x 2 -25,9x 2 -y 2,完成以下探究 问题,并与同伴交流. 1.两个多项式的共同特征: 多项式都只有 项,项的符号 ,每一项都可 以写成 的形式. x 2 -25= 2 - 2 = ( )( ); 9x 2 -y 2= 2 - 2 =( )( ) . 探究学习: 2 2 形象地表示为: - =( + )( - ) 两 平方 相反 2.尝试将x 2 -25,9x 2 -y 2写成两个因式的乘积: x 3x 依据是:a . 2 -b 2=(a+b)(a-b) 5 x+5 x-5 ( ) y 3x+y 3x-y ...
小试身千做烧断 下列各式能用平方差公式2b2=(x+b)( 因式分解吗?若能,你能确定公式中的和b是 什么吗? (1)a2-42;(2)9m2m2;(3),k4,2 25 2.下列多项式可以用平方差公式因式分解吗? 若不能,为什么? (1)4 (2)4x2+ (3)-4x2+y2;(4)-4x2y
1.下列各式能用平方差公式a 2 -b 2=(a+b)(a-b) 因式分解吗?若能,你能确定公式中的a和b是 什么吗? (1)a 2 -4 2; (2)9-m2n 2;(3)x 2 - y 4 2 . 25 燃烧你的激情! (1)4x 2 -y 2; (2)4x 2+y 2; (3)-4x 2+y 2; (4)-4x 2 -y 2 . 2.下列多项式可以用平方差公式因式分解吗? 若不能,为什么?