相对论理论的四维形式6. 4 1-1
1-1 6.4 相对论理论的四维形式
时空本质上是四维的:3维空间+1维时间。洛伦兹变换是一种线性变换,它体现了四维时空的变换关系。但是这种变换的特征是什么?物理量在坐标变换下怎样变换?描写物理规律的方程在变换下是否不变?一、关于正交变换1、二维平面上坐标系的转动变换平面上P点的转动变换满足x'= xcos0+ ysin ey'=-xsin + ycos66±1'2±xX-1-2
1-2 时空本质上是四维的:3维空间+1维时间。 洛伦兹变换是一种线性变换,它体现了四维时空的变换关系。 但是这种变换的特征是什么?物理量在坐标变换下怎样变换? 描写物理规律的方程在变换下是否不变? 一、关于正交变换 1、二维平面上坐标系的转动变换 = − + = + sin cos cos sin y x y x x y 平面上P点的转动变换满足 P x y y x 2 2 2 2 x + y = x + y
sin (xxcosO+ana12正交变换条件y'(- sin 0cosoy(a21a22y0sing1cos0cos -sin0aa ==ad=Icos 0sincos 0福八-sin02、三维空间坐标转动变换X=a1x +a12X2 +ai3X3anai2a13x2 =a21i +a22X2 +a23x =a23X2=aa22a21x =a31 +a32X2 +a33X3X3a32(a31a33口33Zx?-Zx?不变量3x; =Zajxji=1i=1(i-1,2,3)J=I1-3
1-3 = − = y x a a a a y x y x 2 1 2 2 1 1 1 2 sin cos cos sin cos sin cos sin 1 0 sin cos sin cos 0 1 aa aa I − = = = = − 2、三维空间坐标转动变换 1 11 1 12 2 13 3 11 12 13 1 1 2 21 1 22 2 23 3 21 22 23 2 2 3 31 1 32 2 33 3 31 32 33 3 3 x a x a x a x a a a x x x a x a x a x a a a x a x x a x a x a x a a a x x = + + = + + = = = + + 正交变换条件 3 1 i ij j j x a x = = ( 1, 2,3) i = 3 3 2 2 1 1 i i i i x x = = 不变量 =
凡有重复下标的即要取和爱因斯坦惯例为自由指标,为取和指标3x =x = aj,X, ...(1)aijxj=1(x; =aikX =aix))33≥x?=2Xx,x, = xx)...(2)i=1i=1证明变换为正交变换33333322x, =2[2MMMajXjaikXkajaikXjxi=1i=1 j=lk=1i-l j-l k=l个1i=jX,x, = a,XjaikXk.....(3)0ij3又Ex,x, =EE8ix,x<=>X,x, = x,x, = 8 ix,x...(4)j=1j=l k=l1-4
1-4 爱因斯坦惯例 (1) i ij j x a x = ( ) i ik k il l x a x a x = = (2) i i i i x x x x = ( ) 3 3 3 3 3 3 3 1 1 1 1 1 1 1 i i ij j ik k ij ik j k i i j k i j k x x a x a x a a x x = = = = = = = = = 3 1 i ij j j x a x = = 3 3 2 2 1 1 i i i i x x = = = (4) i i j j jk j k x x x x x x = = (3) i i ij j ik k x x a x a x = 凡有重复下标的即要取和, i为自由指标, j为取和指标. = = = = 3 1 3 1 3 j j k 1 j j j k j k 又 x x x x 证明变换为正交变换 1 0 i j ij i j = =
3比较(3)和(4)可得Zt.tikA1aijaik = jk .....(5)i-1(5)与(6)aa = ad = I.........(6)写成矩阵为正交条件或x;=ajixjX, = aix;反变换式:证明:x, =ajXj两边同乘 αi并对i取和aux, =auaX, = OX, = OjX, = Xix= ax'=a-lxx'=ax写成矩阵:1-5
1-5 比较(3)和(4)可得 (5) ij ik jk a a = 写成矩阵 (6) a ~ a = aa ~ = I 写成矩阵: x ax = = = 3 i 1 ij i k j k a a (5)与(6) 为正交条件 反变换式: l il i x a x = i ji j 或 x a x = 1 x ax a x − = = a x a a x x x x il i il ij j lj j lj j l = = = = i ij j 两边同乘 ail 证明: x a x = 并对i 取和